Silica encapsulation and magnetic properties of FePt nanoparticles

被引:91
作者
Aslam, M
Fu, L
Li, S
Dravid, VP [1 ]
机构
[1] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[2] Northwestern Univ, Inst Nanotechnol, Evanston, IL 60208 USA
关键词
FePt nanoparticles; silica; core-shell; sol-gel; colloids;
D O I
10.1016/j.jcis.2005.04.050
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Core-shell nanoparticles have emerged as an important class of functional nanostructures with potential applications in many diverse fields, especially in health sciences. We have used a modified aqueous sol-gel route for the synthesis of size-selective FePt@SiO2 core-shell nanoparticles. In this approach, oleic acid and olyel amine stabilized FePt nanoparticles are first encapsulated through an aminopropoxysilane (APS) monolayer and then subsequent condensation of triethoxysilane (TEOS) on FePt particle surface. These well-defined FePt@SiO2 core-shell nanoparticles with narrow size distribution become colloidal in aqueous media, and can thus be used as carrier fluid for biomolecular complexes. In comparison, the scarce hydrophilic nature of oleic acid monolayers on FePt particle surface yields an edgy partial coating of silica when only TEOS is applied for the surface modification. The synthesized core-shell nanoparticles were characterized by direct techniques of high resolution transmission electron microscopy (HRTEM), EDS and indirectly via UV-vis absorption and FTIR studies. The FePt@SiO2 nanoparticles exhibit essential characteristics of superparamagnetic behavior, as investigated by SQUID magnetometry. The blocking temperatures (T-B) of FePt and FePt@SiO2 (135 and 80 K) were studied using zero field cooled (ZFC)/field cooled (FC) curves. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:444 / 449
页数:6
相关论文
共 27 条
[1]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[2]   FORMATION OF MONOLAYERS BY THE COADSORPTION OF THIOLS ON GOLD - VARIATION IN THE HEAD GROUP, TAIL GROUP, AND SOLVENT [J].
BAIN, CD ;
EVALL, J ;
WHITESIDES, GM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1989, 111 (18) :7155-7164
[3]  
Bradley J., 1994, CLUSTERS COLLOIDS
[4]  
Caruso F, 2001, ADV MATER, V13, P11, DOI 10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO
[5]  
2-N
[6]   Influence of dipolar interaction on magnetic properties of ultrafine ferromagnetic particles [J].
García-Otero, J ;
Porto, M ;
Rivas, J ;
Bunde, A .
PHYSICAL REVIEW LETTERS, 2000, 84 (01) :167-170
[7]   The preparation of ordered colloidal magnetic particles by magnetophoretic deposition [J].
Giersig, M ;
Hilgendorff, M .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (22) :L111-L113
[8]   Synthesis and characterization of spherical magnetite/biodegradable polymer composite particles [J].
Gómez-Lopera, SA ;
Plaza, RC ;
Delgado, AV .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2001, 240 (01) :40-47
[9]   Facile one-pot synthesis of bifunctional heterodimers of nanoparticles: A conjugate of quantum dot and magnetic nanoparticles [J].
Gu, HW ;
Zheng, RK ;
Zhang, XX ;
Xu, B .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (18) :5664-5665
[10]  
Ji TH, 2001, ADV MATER, V13, P1253, DOI 10.1002/1521-4095(200108)13:16<1253::AID-ADMA1253>3.0.CO