Lagrangian acceleration statistics in turbulent flows

被引:82
作者
Beck, C [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
来源
EUROPHYSICS LETTERS | 2003年 / 64卷 / 02期
关键词
D O I
10.1209/epl/i2003-00498-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the probability densities of accelerations of Lagrangian test particles in turbulent flows as measured by Bodenschatz et al. (Nature, 409 (2001) 1017) are in excellent agreement with the predictions of a stochastic model introduced in Beck, Phys. Rev. Lett., 87 (2001) 180601 if the fluctuating friction parameter is assumed to be log-normally distributed. In a generalized statistical mechanics setting, this corresponds to a superstatistics of log-normal type. We analytically evaluate all hyperflatness factors for this model and obtain predictions in good agreement with the experimental data and the DNS data of Gotoh et al. We relate the model to a generalized Sawford model with fluctuating parameters, and discuss a possible universality of the small-scale statistics.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 17 条
[1]  
ARMITSU T, CONDMAT0210274
[2]   Superstatistics [J].
Beck, C ;
Cohen, EGD .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 322 (1-4) :267-275
[3]   Dynamical foundations of nonextensive statistical mechanics [J].
Beck, C .
PHYSICAL REVIEW LETTERS, 2001, 87 (18) :180601-1
[4]   On the small-scale statistics of Lagrangian turbulence [J].
Beck, C .
PHYSICS LETTERS A, 2001, 287 (3-4) :240-244
[5]   VELOCITY PROBABILITY DENSITY-FUNCTIONS OF HIGH REYNOLDS-NUMBER TURBULENCE [J].
CASTAING, B ;
GAGNE, Y ;
HOPFINGER, EJ .
PHYSICA D, 1990, 46 (02) :177-200
[6]  
CRAWFORD AM, PHYSICS0303003
[7]   Statistics of Lagrangian velocities in turbulent flows [J].
Friedrich, R .
PHYSICAL REVIEW LETTERS, 2003, 90 (08) :4
[8]  
KRAICHNAN A, 2002, WORKSH AN DISTR NONL
[9]   Fluid particle accelerations in fully developed turbulence [J].
La Porta, A ;
Voth, GA ;
Crawford, AM ;
Alexander, J ;
Bodenschatz, E .
NATURE, 2001, 409 (6823) :1017-1019
[10]  
Mordant N, 2001, PHYS REV LETT, V87, DOI 10.1103/PhysRevLett.87.214501