Lagrangian acceleration statistics in turbulent flows

被引:82
作者
Beck, C [1 ]
机构
[1] Univ London Queen Mary & Westfield Coll, Sch Math Sci, London E1 4NS, England
来源
EUROPHYSICS LETTERS | 2003年 / 64卷 / 02期
关键词
D O I
10.1209/epl/i2003-00498-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that the probability densities of accelerations of Lagrangian test particles in turbulent flows as measured by Bodenschatz et al. (Nature, 409 (2001) 1017) are in excellent agreement with the predictions of a stochastic model introduced in Beck, Phys. Rev. Lett., 87 (2001) 180601 if the fluctuating friction parameter is assumed to be log-normally distributed. In a generalized statistical mechanics setting, this corresponds to a superstatistics of log-normal type. We analytically evaluate all hyperflatness factors for this model and obtain predictions in good agreement with the experimental data and the DNS data of Gotoh et al. We relate the model to a generalized Sawford model with fluctuating parameters, and discuss a possible universality of the small-scale statistics.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 17 条
[11]   A stochastic Lagrangian model for acceleration in turbulent flows [J].
Pope, SB .
PHYSICS OF FLUIDS, 2002, 14 (07) :2360-2375
[12]   THE VELOCITY-DISSIPATION PROBABILITY DENSITY-FUNCTION MODEL FOR TURBULENT FLOWS [J].
POPE, SB ;
CHEN, YL .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1990, 2 (08) :1437-1449
[13]   On the application of nonextensive statistics to Lagrangian turbulence [J].
Reynolds, AM .
PHYSICS OF FLUIDS, 2003, 15 (01) :L1-L4
[14]   REYNOLDS-NUMBER EFFECTS IN LAGRANGIAN STOCHASTIC-MODELS OF TURBULENT DISPERSION [J].
SAWFORD, BL .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (06) :1577-1586
[15]   POSSIBLE GENERALIZATION OF BOLTZMANN-GIBBS STATISTICS [J].
TSALLIS, C .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :479-487
[16]   Constructing a statistical mechanics for Beck-Cohen superstatistics [J].
Tsallis, C ;
Souza, AMC .
PHYSICAL REVIEW E, 2003, 67 (02) :5
[17]   Measurement of particle accelerations in fully developed turbulence [J].
Voth, GA ;
La Porta, A ;
Crawford, AM ;
Alexander, J ;
Bodenschatz, E .
JOURNAL OF FLUID MECHANICS, 2002, 469 :121-160