A comparison of methods for a priori bias correction in soil moisture data assimilation

被引:113
作者
Kumar, Sujay V. [1 ,2 ]
Reichle, Rolf H. [3 ]
Harrison, Kenneth W. [2 ,4 ]
Peters-Lidard, Christa D. [2 ]
Yatheendradas, Soni [2 ,4 ]
Santanello, Joseph A. [2 ]
机构
[1] Sci Applicat Int Corp, Beltsville, MD USA
[2] NASA, Goddard Space Flight Ctr, Hydrol Sci Lab, Greenbelt, MD 20771 USA
[3] NASA, Goddard Space Flight Ctr, Global Modeling & Assimilat Off, Greenbelt, MD 20771 USA
[4] Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA
关键词
LAND INFORMATION-SYSTEM; PARAMETER-ESTIMATION; HYDRAULIC-PROPERTIES; SURFACE MODEL; WATER; UNCERTAINTY; FRAMEWORK; IMPACT; FILTER; STATES;
D O I
10.1029/2010WR010261
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Data assimilation is increasingly being used to merge remotely sensed land surface variables such as soil moisture, snow, and skin temperature with estimates from land models. Its success, however, depends on unbiased model predictions and unbiased observations. Here a suite of continental-scale, synthetic soil moisture assimilation experiments is used to compare two approaches that address typical biases in soil moisture prior to data assimilation: (1) parameter estimation to calibrate the land model to the climatology of the soil moisture observations and (2) scaling of the observations to the model's soil moisture climatology. To enable this research, an optimization infrastructure was added to the NASA Land Information System (LIS) that includes gradient-based optimization methods and global, heuristic search algorithms. The land model calibration eliminates the bias but does not necessarily result in more realistic model parameters. Nevertheless, the experiments confirm that model calibration yields assimilation estimates of surface and root zone soil moisture that are as skillful as those obtained through scaling of the observations to the model's climatology. Analysis of innovation diagnostics underlines the importance of addressing bias in soil moisture assimilation and confirms that both approaches adequately address the issue.
引用
收藏
页数:16
相关论文
共 71 条
[31]  
Holland J.H., 1992, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence
[32]   The SMOS Mission: New Tool for Monitoring Key Elements of the Global Water Cycle [J].
Kerr, Yann H. ;
Waldteufel, Philippe ;
Wigneron, Jean-Pierre ;
Delwart, Steven ;
Cabot, Francois ;
Boutin, Jacqueline ;
Escorihuela, Maria-Jose ;
Font, Jordi ;
Reul, Nicolas ;
Gruhier, Claire ;
Juglea, Silvia Enache ;
Drinkwater, Mark R. ;
Hahne, Achim ;
Martin-Neira, Manuel ;
Mecklenburg, Susanne .
PROCEEDINGS OF THE IEEE, 2010, 98 (05) :666-687
[33]   A catchment-based approach to modeling land surface processes in a general circulation model 1. Model structure [J].
Koster, RD ;
Suarez, MJ ;
Ducharne, A ;
Stieglitz, M ;
Kumar, P .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D20) :24809-24822
[34]   Land information system: An interoperable framework for high resolution land surface modeling [J].
Kumar, S. V. ;
Peters-Lidard, C. D. ;
Tian, Y. ;
Houser, P. R. ;
Geiger, J. ;
Olden, S. ;
Lighty, L. ;
Eastman, J. L. ;
Doty, B. ;
Dirmeyer, P. ;
Adams, J. ;
Mitchell, K. ;
Wood, E. F. ;
Sheffield, J. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2006, 21 (10) :1402-1415
[35]  
Kumar S. V., 2009, J HYDROMETEOROL, V11, P1103, DOI [10.1175/2010JHM1262.1., DOI 10.1175/2010JHM1262.1]
[36]   An Integrated Hydrologic Modeling and Data Assimilation Framework [J].
Kumar, Sujay ;
Peters-Lidard, Christa ;
Tian, Yudong ;
Reichle, Rolf ;
Geiger, James ;
Alonge, Charles ;
Eylander, John ;
Houser, Paul .
COMPUTER, 2008, 41 (12) :52-+
[37]   A land surface data assimilation framework using the land information system: Description and applications [J].
Kumar, Sujay V. ;
Reichle, Rolf H. ;
Peters-Lidard, Christa D. ;
Koster, Randal D. ;
Zhan, Xiwu ;
Crow, Wade T. ;
Eylander, John B. ;
Houser, Paul R. .
ADVANCES IN WATER RESOURCES, 2008, 31 (11) :1419-1432
[38]   Remote Estimation of the Hydraulic Properties of a Sand Using Full-Waveform Integrated Hydrogeophysical Inversion of Time-Lapse, Off-Ground GPR Data [J].
Lambot, Sebastien ;
Slob, Evert ;
Rhebergen, Jan ;
Lopera, Olga ;
Jadoon, Khan Zaib ;
Vereecken, Harry .
VADOSE ZONE JOURNAL, 2009, 8 (03) :743-754
[39]  
Levenberg K, 1944, Q Appl Math, V2, P164, DOI [10.1090/QAM/10666, 10.1090/qam/10666, DOI 10.1090/QAM/10666, DOI 10.1090/QAM/1944-02-02]
[40]   The Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System [J].
Liu, Qing ;
Reichle, Rolf H. ;
Bindlish, Rajat ;
Cosh, Michael H. ;
Crow, Wade T. ;
de Jeu, Richard ;
De Lannoy, Gabrielle J. M. ;
Huffman, George J. ;
Jackson, Thomas J. .
JOURNAL OF HYDROMETEOROLOGY, 2011, 12 (05) :750-765