Engineering metabolic highways in Lactococci and other lactic acid bacteria

被引:102
作者
de Vos, WM
Hugenholtz, J
机构
[1] Wageningen Ctr Food Sci, NL-6700 AN Wageningen, Netherlands
[2] Wageningen Univ, Microbiol Lab, NL-6703 CT Wageningen, Netherlands
[3] NIZO Food Res, Dept Flavour Ingredients & Nutr, NL-6700 BA Ede, Netherlands
关键词
D O I
10.1016/j.tibtech.2003.11.011
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Lactic acid bacteria (LAB) are widely used in industrial food fermentations and are receiving increased attention for use as cell factories for the production of food and pharmaceutical products. Glycolytic conversion of sugars into lactic acid is the main metabolic highway in these Gram-positive bacteria and Lactococcus lactis has become the model organism because of its small genome, genetic accessibility and simple metabolism. Here we discuss the metabolic engineering of L. lactis and the value of metabolic models compared with other LAB, with a particular focus on the food-grade production of metabolites involved in flavour, texture and health.
引用
收藏
页码:72 / 79
页数:8
相关论文
共 64 条
[1]   Twofold reduction of phosphofructokinase activity in Lactococcus lactis results in strong decreases in growth rate and in glycolytic flux [J].
Andersen, HW ;
Solem, C ;
Hammer, K ;
Jensen, PR .
JOURNAL OF BACTERIOLOGY, 2001, 183 (11) :3458-3467
[2]   Physiological function of the maltose operon regulator, MalR, in Lactococcus lactis [J].
Andersson, Ulrika ;
Radstrom, Peter .
BMC MICROBIOLOGY, 2002, 2 (1) :1-7
[3]   Increased exopolysaccharide production in Lactococcus lactis due to increased levels of expression of the NIZO B40 eps gene cluster [J].
Boels, IC ;
van Kranenburg, R ;
Kanning, MW ;
Chong, BF ;
de Vos, WM ;
Kleerebezem, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (08) :5029-5031
[4]   Engineering of carbon distribution between glycolysis and sugar nucleotide biosynthesis in Lactococcus lactis [J].
Boels, IC ;
Kleerebezem, M ;
de Vos, WM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (02) :1129-1135
[5]   Functional analysis of the Lactococcus lactis galU and galE genes and their impact on sugar nucleotide and exopolysaccharide biosynthesis [J].
Boels, IC ;
Ramos, A ;
Kleerebezem, M ;
De Vos, WM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (07) :3033-3040
[6]   Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria [J].
Boels, IC ;
van Kranenburg, R ;
Hugenholtz, J ;
Kleerebezem, M ;
de Vos, WM .
INTERNATIONAL DAIRY JOURNAL, 2001, 11 (09) :723-732
[7]   The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp lactis IL1403 [J].
Bolotin, A ;
Wincker, P ;
Mauger, S ;
Jaillon, O ;
Malarme, K ;
Weissenbach, J ;
Ehrlich, SD ;
Sorokin, A .
GENOME RESEARCH, 2001, 11 (05) :731-753
[8]   IS981-mediated adaptive evolution recovers lactate production by ldhB transcription activation in a lactate dehydrogenase-deficient strain of Lactococcus lactis [J].
Bongers, RS ;
Hoefnagel, MHN ;
Starrenburg, MJC ;
Siemerink, MAJ ;
Arends, JGA ;
Hugenholtz, J ;
Meerebezem, M .
JOURNAL OF BACTERIOLOGY, 2003, 185 (15) :4499-4507
[9]   Anaerobic sugar catabolism in Lactococcus lactis:: genetic regulation and enzyme control over pathway flux [J].
Cocaign-Bousquet, M ;
Even, S ;
Lindley, ND ;
Loubière, P .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 60 (1-2) :24-32
[10]  
de Felipe FL, 1997, FEMS MICROBIOL LETT, V156, P15, DOI 10.1111/j.1574-6968.1997.tb12699.x