Spatial structure of complex cell receptive fields measured with natural images

被引:154
作者
Touryan, J
Felsen, G
Dan, Y [1 ]
机构
[1] Univ Calif Berkeley, Sch Optometry, Grp Vis Sci, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Mol & Cell Biol, Div Neurobiol, Berkeley, CA 94720 USA
关键词
D O I
10.1016/j.neuron.2005.01.029
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuronal receptive fields (RFs) play crucial roles in visual processing. While the linear RFs of early neurons have been well studied, RFs of cortical complex cells are nonlinear and therefore difficult to characterize, especially in the context of natural stimuli. In this study, we used a nonlinear technique to compute the RFs of complex cells from their responses to natural images. We found that each RF is well described by a small number of subunits, which are oriented, localized, and bandpass. These subunits contribute to neuronal responses in a contrast-dependent, polarity invariant manner, and they can largely predict the orientation and spatial frequency tuning of the cell. Although the RIF structures measured with natural images were similar to those measured with random stimuli, natural images were more effective for driving complex cells, thus facilitating rapid identification of the subunits. The subunit RF model provides a useful basis for understanding cortical processing of natural stimuli.
引用
收藏
页码:781 / 791
页数:11
相关论文
共 50 条
[1]   SPATIOTEMPORAL ENERGY MODELS FOR THE PERCEPTION OF MOTION [J].
ADELSON, EH ;
BERGEN, JR .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1985, 2 (02) :284-299
[2]   STIMULUS SPECIFIC RESPONSES FROM BEYOND THE CLASSICAL RECEPTIVE-FIELD - NEUROPHYSIOLOGICAL MECHANISMS FOR LOCAL GLOBAL COMPARISONS IN VISUAL NEURONS [J].
ALLMAN, J ;
MIEZIN, F ;
MCGUINNESS, E .
ANNUAL REVIEW OF NEUROSCIENCE, 1985, 8 :407-430
[3]   Functional connectivity between simple cells and complex cells in cat striate cortex [J].
Alonso, JM ;
Martinez, LM .
NATURE NEUROSCIENCE, 1998, 1 (05) :395-403
[4]   Neural mechanisms for processing binocular information I. Simple cells [J].
Anzai, A ;
Ohzawa, I ;
Freeman, RD .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 82 (02) :891-908
[6]   Adaptive rescaling maximizes information transmission [J].
Brenner, N ;
Bialek, W ;
van Steveninck, RD .
NEURON, 2000, 26 (03) :695-702
[7]  
Chichilnisky EJ, 2001, NETWORK-COMP NEURAL, V12, P199, DOI 10.1088/0954-898X/12/2/306
[8]   Natural stimulus statistics alter the receptive field structure of V1 neurons [J].
David, SV ;
Vinje, WE ;
Gallant, JL .
JOURNAL OF NEUROSCIENCE, 2004, 24 (31) :6991-7006
[9]   SPATIOTEMPORAL ORGANIZATION OF SIMPLE-CELL RECEPTIVE-FIELDS IN THE CATS STRIATE CORTEX .2. LINEARITY OF TEMPORAL AND SPATIAL SUMMATION [J].
DEANGELIS, GC ;
OHZAWA, I ;
FREEMAN, RD .
JOURNAL OF NEUROPHYSIOLOGY, 1993, 69 (04) :1118-1135
[10]   Stimulus-dependent modulation of spike burst length in cat striate cortical cells [J].
DeBusk, BC ;
DeBruyn, EJ ;
Snider, RK ;
Kabara, JF ;
Bonds, AB .
JOURNAL OF NEUROPHYSIOLOGY, 1997, 78 (01) :199-213