Affine processes and applications in finance

被引:14
作者
Duffie, D [1 ]
Filipovic, D
Schachermayer, W
机构
[1] Stanford Univ, Grad Sch Business, Stanford, CA 94305 USA
[2] Vienna Univ Technol, Dept Financial & Actuarial Math, A-1040 Vienna, Austria
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
关键词
affine process; characteristic function; continuous-state branching with immigration; default risk; infinitely decomposable; interest rates; option pricing; Ornstein-Uhlenbeck type;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide the definition and a complete characterization of regular affine processes. This type of process unifies the concepts of continuous-state branching processes with immigration and Ornstein-Uhlenbeck type processes. We show, and provide foundations for, a wide range of financial applications for regular affine processes.
引用
收藏
页码:984 / 1053
页数:70
相关论文
共 94 条
[1]  
Amann H, 1990, DEGRUYTER STUDIES MA, V13
[2]   Affine term structure models and the forward premium anomaly [J].
Backus, DK ;
Foresi, S ;
Telmer, CI .
JOURNAL OF FINANCE, 2001, 56 (01) :279-304
[3]   Empirical performance of alternative option pricing models [J].
Bakshi, G ;
Cao, C ;
Chen, ZW .
JOURNAL OF FINANCE, 1997, 52 (05) :2003-2049
[4]   Spanning and derivative-security valuation [J].
Bakshi, G ;
Madan, D .
JOURNAL OF FINANCIAL ECONOMICS, 2000, 55 (02) :205-238
[5]   The central tendency: A second factor in bond yields [J].
Balduzzi, P ;
Das, SR ;
Foresi, S .
REVIEW OF ECONOMICS AND STATISTICS, 1998, 80 (01) :62-72
[6]  
Balduzzi P., 1996, J FIXED INCOME, V6, P43
[7]   Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics [J].
Barndorff-Nielsen, OE ;
Shephard, N .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :167-207
[8]   Post-'87 crash fears in the S&P 500 futures option market [J].
Bates, DS .
JOURNAL OF ECONOMETRICS, 2000, 94 (1-2) :181-238
[9]   Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options [J].
Bates, DS .
REVIEW OF FINANCIAL STUDIES, 1996, 9 (01) :69-107
[10]  
Bauer H., 1996, Probability Theory