Affine processes and applications in finance

被引:14
作者
Duffie, D [1 ]
Filipovic, D
Schachermayer, W
机构
[1] Stanford Univ, Grad Sch Business, Stanford, CA 94305 USA
[2] Vienna Univ Technol, Dept Financial & Actuarial Math, A-1040 Vienna, Austria
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
关键词
affine process; characteristic function; continuous-state branching with immigration; default risk; infinitely decomposable; interest rates; option pricing; Ornstein-Uhlenbeck type;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide the definition and a complete characterization of regular affine processes. This type of process unifies the concepts of continuous-state branching processes with immigration and Ornstein-Uhlenbeck type processes. We show, and provide foundations for, a wide range of financial applications for regular affine processes.
引用
收藏
页码:984 / 1053
页数:70
相关论文
共 94 条
[71]  
Maghsoodi Y., 1996, MATH FINANC, V6, P89, DOI [DOI 10.1111/J.1467-9965.1996.TB00113.X, 10.1111/j.1467-9965.1996.tb00113.x]
[72]   The jump-risk premia implicit in options: evidence from an integrated time-series study [J].
Pan, J .
JOURNAL OF FINANCIAL ECONOMICS, 2002, 63 (01) :3-50
[73]  
Pearson N., 1994, J FINANC, V54, P929
[74]  
Piazzesi M., 2003, HDB FINANCIAL ECONOM
[75]  
REVUZ D, 1994, CONTINUOUS MARTINGAL
[76]  
ROGERS L.C.G., 1994, Diffusions, Markov Processes, and Martingales, V1
[77]  
Rudin W., 1991, FUNCTIONAL ANAL
[78]  
Sato K., 2013, Cambridge Studies inAdvanced Mathematics, V2nd
[79]   An isomorphism between asset pricing models with and without linear habit formation [J].
Schroder, M ;
Skiadas, C .
REVIEW OF FINANCIAL STUDIES, 2002, 15 (04) :1189-1221
[80]   Optimal consumption and portfolio selection with stochastic differential utility [J].
Schroder, M ;
Skiadas, C .
JOURNAL OF ECONOMIC THEORY, 1999, 89 (01) :68-126