Involvement of AlpV, a new member of the Streptomyces antibiotic regulatory protein family, in regulation of the duplicated type II polyketide synthase alp gene cluster in Streptomyces ambofaciens

被引:33
作者
Aigle, B [1 ]
Pang, XH [1 ]
Decaris, B [1 ]
Leblond, P [1 ]
机构
[1] Univ Henri Poincare, Fac Sci & Tech, Lab Genet Microbiol, INRA,UMR 1128,UHP,IFR 110, F-54506 Vandoeuvre Les Nancy, France
关键词
D O I
10.1128/JB.187.7.2491-2500.2005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
A type II polyketide synthase gene cluster located in the terminal inverted repeats of Streptomyces ambofaciens ATCC 23877 was shown to be responsible for the production of an orange pigment and alpomycin, a new antibiotic probably belonging to the angucycline/angucyclinone class. Remarkably, this alp cluster contains five potential regulatory genes, three of which (alpT, alpU, and alpV) encode proteins with high similarity to members of the Streptomyces antibiotic regulatory protein (SARP) family. Deletion of the two copies of alpV (one in each alp cluster located at the two termini) abolished pigment and antibiotic production, suggesting that AlpV acts as a transcriptional activator of the biosynthetic genes. Consistent with this idea, the transcription of alpA, which encodes a ketosynthase essential for orange pigment and antibiotic production, was impaired in the alpV mutant, while the expression of alpT, alpU, and alpZ, another regulatory gene encoding a gamma-butyrolactone receptor, was not significantly affected. Real-time PCR experiments showed that transcription of alpV in the wild-type strain increases dramatically after entering the transition phase. This induction precedes that of alpA, suggesting that AlpV needs to reach a threshold level to activate the expression of the structural genes. When introduced into an S. coelicolor mutant with deletions of actII-ORF4 and redD, the SARP-encoding genes regulating the biosynthesis of actinorhodin and undecylprodigiosin, respectively, alpV was able to restore actinorhodin production only. However, actII-ORF4 did not complement the alpV mutant, suggesting that AlpV and ActII-ORF4 may act in a different way.
引用
收藏
页码:2491 / 2500
页数:10
相关论文
共 47 条
[1]   Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein [J].
Arias, P ;
Fernández-Moreno, MA ;
Malpartida, F .
JOURNAL OF BACTERIOLOGY, 1999, 181 (22) :6958-6968
[2]   Differential roles of two SARP-encoding regulatory genes during tylosin biosynthesis [J].
Bate, N ;
Stratigopoulos, G ;
Cundliffe, E .
MOLECULAR MICROBIOLOGY, 2002, 43 (02) :449-458
[3]   Multiple regulatory genes in the tylosin biosynthetic cluster of Streptomyces fradiae [J].
Bate, N ;
Butler, AR ;
Gandecha, AR ;
Cundliffe, E .
CHEMISTRY & BIOLOGY, 1999, 6 (09) :617-624
[4]   PLASMID CLONING VECTORS FOR THE CONJUGAL TRANSFER OF DNA FROM ESCHERICHIA-COLI TO STREPTOMYCES SPP [J].
BIERMAN, M ;
LOGAN, R ;
OBRIEN, K ;
SENO, ET ;
RAO, RN ;
SCHONER, BE .
GENE, 1992, 116 (01) :43-49
[5]   CLONING, DISRUPTION, AND TRANSCRIPTIONAL ANALYSIS OF 3 RNA-POLYMERASE SIGMA-FACTOR GENES OF STREPTOMYCES-COELICOLOR A3(2) [J].
BUTTNER, MJ ;
CHATER, KF ;
BIBB, MJ .
JOURNAL OF BACTERIOLOGY, 1990, 172 (06) :3367-3378
[6]  
Champness W, 2000, PROKARYOTIC DEVELOPMENT, P11
[7]   Cloning and characterization of a regulatory gene of the SARP family and its flanking region from Streptomyces ambofaciens [J].
Culebras, E ;
Martínez, E ;
Carnero, A ;
Malpartida, F .
MOLECULAR AND GENERAL GENETICS, 1999, 262 (4-5) :730-737
[8]   The tylosin-biosynthetic genes of Streptomyces fradiae [J].
Cundliffe, E ;
Bate, N ;
Butler, A ;
Fish, S ;
Gandecha, A ;
Merson-Davies, L .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 2001, 79 (3-4) :229-234
[9]   One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J].
Datsenko, KA ;
Wanner, BL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (12) :6640-6645
[10]   Prediction of transcription terminators in bacterial genomes [J].
Ermolaeva, MD ;
Khalak, HG ;
White, O ;
Smith, HO ;
Salzberg, SL .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 301 (01) :27-33