Gauge-invariant perturbations of Schwarzschild black holes in horizon-penetrating coordinates

被引:100
作者
Sarbach, O [1 ]
Tiglio, M
机构
[1] Penn State Univ, Dept Phys, Ctr Gravitat Phys & Geometry, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
来源
PHYSICAL REVIEW D | 2001年 / 64卷 / 08期
关键词
D O I
10.1103/PhysRevD.64.084016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We derive a geometrical version of the Regge-Wheeler and Zerilli equations, which allows us to study gravitational perturbations on an arbitrary spherically symmetric slicing of a Schwarzschild black hole. We explain how to obtain the gauge-invariant part of the metric perturbations from the amplitudes obeying our generalized Regge-Wheeler and Zerilli equations, and vice-versa. We also give a general expression for the radiated energy at infinity, and establish a relation between our geometrical equations and the Teukolsky formalism. The results presented in this paper are expected to be useful for the close-limit approximation to black hole collisions. for the Cauchy perturbative matching problem, and for the study of isolated horizons.
引用
收藏
页数:15
相关论文
共 55 条
[1]   CALCULATION OF GRAVITATIONAL WAVE-FORMS FROM BLACK-HOLE COLLISIONS AND DISK COLLAPSE - APPLYING PERTURBATION-THEORY TO NUMERICAL SPACETIMES [J].
ABRAHAMS, AM ;
SHAPIRO, SL ;
TEUKOLSKY, SA .
PHYSICAL REVIEW D, 1995, 51 (08) :4295-4301
[2]   Gravitational wave extraction and outer boundary conditions by perturbative matching [J].
Abrahams, AM ;
Rezzolla, L ;
Rupright, ME ;
Anderson, A ;
Anninos, P ;
Baumgarte, TW ;
Bishop, NT ;
Brandt, SR ;
Browne, JC ;
Camarda, K ;
Choptuik, MW ;
Cook, GB ;
Correll, RR ;
Evans, CR ;
Finn, LS ;
Fox, GC ;
Gomez, R ;
Haupt, T ;
Huq, MF ;
Kidder, LE ;
Klasky, SA ;
Laguna, P ;
Landry, W ;
Lehner, L ;
Lenaghan, J ;
Marsa, RL ;
Masso, J ;
Matzner, RA ;
Mitra, S ;
Papadopoulos, P ;
Parashar, M ;
Saied, F ;
Saylor, PE ;
Scheel, MA ;
Seidel, E ;
Shapiro, SL ;
Shoemaker, D ;
Smarr, L ;
Szilagyi, B ;
Teukolsky, SA ;
van Putten, MHPM ;
Walker, P ;
Winicour, J ;
York, JW .
PHYSICAL REVIEW LETTERS, 1998, 80 (09) :1812-1815
[3]  
ALCUBIERRE M, GRQC0104020
[4]   Curvature-based gauge-invariant perturbation theory for gravity: A new paradigm [J].
Anderson, A ;
Abrahams, AM ;
Lea, C .
PHYSICAL REVIEW D, 1998, 58 (06)
[5]   INTERTWINING OF THE EQUATIONS OF BLACK-HOLE PERTURBATIONS [J].
ANDERSON, A ;
PRICE, RH .
PHYSICAL REVIEW D, 1991, 43 (10) :3147-3154
[6]   HEAD-ON COLLISION OF 2 BLACK-HOLES - COMPARISON OF DIFFERENT APPROACHES [J].
ANNINOS, P ;
PRICE, RH ;
PULLIN, J ;
SEIDEL, E ;
SUEN, WM .
PHYSICAL REVIEW D, 1995, 52 (08) :4462-4480
[7]   Generic isolated horizons and their applications [J].
Ashtekar, A ;
Beetle, C ;
Dreyer, O ;
Fairhurst, S ;
Krishnan, B ;
Lewandowski, J ;
Wisniewski, J .
PHYSICAL REVIEW LETTERS, 2000, 85 (17) :3564-3567
[8]   Gravitational waves from black hole collisions via an eclectic approach [J].
Baker, J ;
Brügmann, B ;
Campanelli, M ;
Lousto, CO .
CLASSICAL AND QUANTUM GRAVITY, 2000, 17 (20) :L149-L156
[9]   Nonlinear and perturbative evolution of distorted black holes: Odd-parity modes [J].
Baker, J ;
Brandt, S ;
Campanelli, M ;
Lousto, CO ;
Seidel, E .
PHYSICAL REVIEW D, 2000, 62 (12) :1-4
[10]   Making use of geometrical invariants in black hole collisions [J].
Baker, J ;
Campanelli, M .
PHYSICAL REVIEW D, 2000, 62 (12) :1-4