Gauge-invariant perturbations of Schwarzschild black holes in horizon-penetrating coordinates
被引:100
作者:
Sarbach, O
论文数: 0引用数: 0
h-index: 0
机构:
Penn State Univ, Dept Phys, Ctr Gravitat Phys & Geometry, University Pk, PA 16802 USAPenn State Univ, Dept Phys, Ctr Gravitat Phys & Geometry, University Pk, PA 16802 USA
Sarbach, O
[1
]
Tiglio, M
论文数: 0引用数: 0
h-index: 0
机构:Penn State Univ, Dept Phys, Ctr Gravitat Phys & Geometry, University Pk, PA 16802 USA
Tiglio, M
机构:
[1] Penn State Univ, Dept Phys, Ctr Gravitat Phys & Geometry, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Astron & Astrophys, University Pk, PA 16802 USA
来源:
PHYSICAL REVIEW D
|
2001年
/
64卷
/
08期
关键词:
D O I:
10.1103/PhysRevD.64.084016
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
We derive a geometrical version of the Regge-Wheeler and Zerilli equations, which allows us to study gravitational perturbations on an arbitrary spherically symmetric slicing of a Schwarzschild black hole. We explain how to obtain the gauge-invariant part of the metric perturbations from the amplitudes obeying our generalized Regge-Wheeler and Zerilli equations, and vice-versa. We also give a general expression for the radiated energy at infinity, and establish a relation between our geometrical equations and the Teukolsky formalism. The results presented in this paper are expected to be useful for the close-limit approximation to black hole collisions. for the Cauchy perturbative matching problem, and for the study of isolated horizons.