Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate

被引:101
作者
Johansson, B [1 ]
Christensson, C [1 ]
Hobley, T [1 ]
Hahn-Hägerdal, B [1 ]
机构
[1] Lund Univ, Dept Appl Microbiol, S-22100 Lund, Sweden
关键词
D O I
10.1128/AEM.67.9.4249-4255.2001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Fermentation of the pentose sugar xylose to ethanol in lignocellulosic biomass would make bioethanol production economically more competitive. Saccharomyces cerevisiae, an efficient ethanol producer, can utilize xylose only when expressing the heterologous genes XYL1 (xylose reductase) and XYL2 (xylitol dehydrogenase). Xylose reductase and xylitol dehydrogenase convert xylose to its isomer xylulose. The gene XKS1 encodes the xylulose-phosphorylating enzyme xylulokinase. In this study, we determined the effect of XKS1 overexpression on two different S. cerevisiae host strains, H158 and CEN.PK, also expressing XYL1 and XYL2. H158 has been previously used as a host strain for the construction of recombinant xylose-utilizing S. cerevisiae strains. CEN.PK is a new strain specifically developed to serve as a host strain for the development of metabolic engineering strategies. Fermentation was carried out in defined and complex media containing a hexose and pentose sugar mixture or a birch wood lignocellulosic hydrolysate. XKS1 overexpression increased the ethanol yield by a factor of 2 and reduced the xylitol yield by 70 to 100% and the final acetate concentrations by 50 to 100%. However, XKS1 overexpression reduced the total xylose consumption by half for CEN.PK and to as little as one-fifth for H158. Yeast extract and peptone partly restored sugar consumption in hydrolysate medium. CEN.PK consumed more xylose but produced more xylitol than H158 and thus gave lower ethanol yields on consumed xylose. The results demonstrate that strain background and modulation of XKS1 expression are important for generating an efficient xylose-fermenting recombinant strain of S. cerevisiae.
引用
收藏
页码:4249 / 4255
页数:7
相关论文
共 47 条
[1]  
AUSUBEL FM, 1995, CURRENT PROTOLCOLS M
[2]   INVIVO HALF-LIFE OF A PROTEIN IS A FUNCTION OF ITS AMINO-TERMINAL RESIDUE [J].
BACHMAIR, A ;
FINLEY, D ;
VARSHAVSKY, A .
SCIENCE, 1986, 234 (4773) :179-186
[3]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[4]   SELECTION AND OPTIMIZATION OF YEAST SUITABLE FOR ETHANOL-PRODUCTION AT 40-DEGREES-C [J].
DAMORE, T ;
CELOTTO, G ;
RUSSELL, I ;
STEWART, GG .
ENZYME AND MICROBIAL TECHNOLOGY, 1989, 11 (07) :411-416
[5]   REGULATION OF CARBON METABOLISM IN CHEMOSTAT CULTURES OF SACCHAROMYCES-CEREVISIAE GROWN ON MIXTURES OF GLUCOSE AND ETHANOL [J].
DEJONGGUBBELS, P ;
VANROLLEGHEM, P ;
HEIJNEN, S ;
VANDIJKEN, JP ;
PRONK, JT .
YEAST, 1995, 11 (05) :407-418
[6]  
DENG X X, 1990, Applied Biochemistry and Biotechnology, V24-25, P193, DOI 10.1007/BF02920245
[7]   CONSERVATION OF HIGH-EFFICIENCY PROMOTER SEQUENCES IN SACCHAROMYCES-CEREVISIAE [J].
DOBSON, MJ ;
TUITE, MF ;
ROBERTS, NA ;
KINGSMAN, AJ ;
KINGSMAN, SM ;
PERKINS, RE ;
CONROY, SC ;
DUNBAR, B ;
FOTHERGILL, LA .
NUCLEIC ACIDS RESEARCH, 1982, 10 (08) :2625-2637
[8]   Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae [J].
Eliasson, A ;
Boles, E ;
Johansson, B ;
Österberg, M ;
Thevelein, JM ;
Spencer-Martins, I ;
Juhnke, H ;
Hahn-Hägerdal, B .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2000, 53 (04) :376-382
[9]   Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures [J].
Eliasson, A ;
Christensson, C ;
Wahlbom, CF ;
Hahn-Hägerdal, B .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2000, 66 (08) :3381-3386
[10]  
Entian KD, 1998, METHOD MICROBIOL, V26, P431