Revised self-consistent continuum solvation in electronic-structure calculations

被引:428
作者
Andreussi, Oliviero [1 ,2 ]
Dabo, Ismaila [3 ]
Marzari, Nicola [2 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] Ecole Polytech Fed Lausanne, Stn 12, CH-1015 Lausanne, Switzerland
[3] Univ Paris Est, Project Team INRIA Micmac, CERMICS, F-77455 Marne La Vallee, France
关键词
INITIO MOLECULAR-DYNAMICS; DENSITY-FUNCTIONAL THEORY; LIQUID WATER; VOLUME POLARIZATION; IONIC-SOLUTIONS; SIMULATIONS; FIELD; SURFACES; MODELS; GEPOL;
D O I
10.1063/1.3676407
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The solvation model proposed by Fattebert and Gygi [J. Comput. Chem. 23, 662 (2002)] and Scherlis et al. [J. Chem. Phys. 124, 074103 (2006)] is reformulated, overcoming some of the numerical limitations encountered and extending its range of applicability. We first recast the problem in terms of induced polarization charges that act as a direct mapping of the self-consistent continuum dielectric; this allows to define a functional form for the dielectric that is well behaved both in the high-density region of the nuclear charges and in the low-density region where the electronic wavefunctions decay into the solvent. Second, we outline an iterative procedure to solve the Poisson equation for the quantum fragment embedded in the solvent that does not require multigrid algorithms, is trivially parallel, and can be applied to any Bravais crystallographic system. Last, we capture some of the non-electrostatic or cavitation terms via a combined use of the quantum volume and quantum surface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)] of the solute. The resulting self-consistent continuum solvation model provides a very effective and compact fit of computational and experimental data, whereby the static dielectric constant of the solvent and one parameter allow to fit the electrostatic energy provided by the polarizable continuum model with a mean absolute error of 0.3 kcal/mol on a set of 240 neutral solutes. Two parameters allow to fit experimental solvation energies on the same set with a mean absolute error of 1.3 kcal/mol. A detailed analysis of these results, broken down along different classes of chemical compounds, shows that several classes of organic compounds display very high accuracy, with solvation energies in error of 0.3-0.4 kcal/mol, whereby larger discrepancies are mostly limited to self-dissociating species and strong hydrogen-bond-forming compounds. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676407]
引用
收藏
页数:20
相关论文
共 63 条
[1]   Self-consistent-field calculation of Pauli repulsion and dispersion contributions to the solvation free energy in the polarizable continuum model [J].
Amovilli, C ;
Mennucci, B .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (06) :1051-1057
[2]   ITERATIVE PROCEDURES FOR NONLINEAR INTEGRAL EQUATIONS [J].
ANDERSON, DG .
JOURNAL OF THE ACM, 1965, 12 (04) :547-&
[3]  
[Anonymous], QUANTUM ESPRESSO ONL
[4]  
[Anonymous], CHEM SOC PERKIN T
[5]  
[Anonymous], PSLIBRARY VERSION 0
[6]   A new definition of cavities for the computation of solvation free energies by the polarizable continuum model [J].
Barone, V ;
Cossi, M ;
Tomasi, J .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (08) :3210-3221
[7]  
Ben-Naim A., 1992, STAT THERMODYNAMICS
[8]  
Ben-Naim A., 1987, SOLVATION THERMODYNA
[9]   VAN DER WAALS VOLUMES + RADII [J].
BONDI, A .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (03) :441-+
[10]   New applications of integral equations methods for solvation continuum models: ionic solutions and liquid crystals [J].
Cances, E ;
Mennucci, B .
JOURNAL OF MATHEMATICAL CHEMISTRY, 1998, 23 (3-4) :309-326