Integration of amyloid nanowires in organic solar cells

被引:41
作者
Barrau, S. [1 ]
Zhang, F. [1 ]
Herland, A. [1 ]
Mammo, W. [2 ]
Andersson, M. R. [2 ]
Inganas, O. [1 ]
机构
[1] Linkoping Univ, Dept Phys Chem & Biol, IFM, SE-58183 Linkoping, Sweden
[2] Chalmers Univ Technol, Dept Chem & Biol Engn Polymer Technol, SE-41296 Gothenburg, Sweden
关键词
D O I
10.1063/1.2949073
中图分类号
O59 [应用物理学];
学科分类号
摘要
Amyloid nanowires were incorporated in organic photovoltaic devices in order to enhance the transport properties. Amyloid fibrils act as a template for donor-acceptor materials. The current-voltage characteristics under illumination and in the dark display a maximum for the fill factor and the space charge limit current, respectively, at an amyloid nanowire-donor-acceptor mass ratio of 0.014:1:1, associated to a better charge transport in the donor-acceptor domains. The absorption experiments display a redshift associated to a more planar polymer backbone with increasing concentration of amyloid fibrils. Amyloid nanowires present a significant effect on the donor-acceptor materials organization. (C) 2008 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 17 条
[1]   Electrochemical and optical studies of the band gaps of alternating polyfluorene copolymers [J].
Admassie, Shimelis ;
Inganas, Olle ;
Mammo, Wendimagegn ;
Perzon, Erik ;
Andersson, Mats R. .
SYNTHETIC METALS, 2006, 156 (7-8) :614-623
[2]   Poly (3-hexylthiophene) fibers for photovoltaic applications [J].
Berson, Solenn ;
De Bettignies, Remi ;
Bailly, Severine ;
Guillerez, Stephane .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (08) :1377-1384
[3]  
CHERNY I, 2008, ANGEW CHEM INT EDIT, V47, P2
[4]   Photoinduced charge transfer between poly(3-hexylthiophene) and germanium nanowires [J].
Du Pasquier, Aurelien ;
Mastrogiovanni, Daniel D. T. ;
Klein, Lauren A. ;
Wang, Tong ;
Garfunkel, Eric .
APPLIED PHYSICS LETTERS, 2007, 91 (18)
[5]   Decoration of amyloid fibrils with luminescent conjugated polymers [J].
Herland, Anna ;
Thomsson, Daniel ;
Mirzov, Oleg ;
Scheblykin, Ivan G. ;
Inganas, Olle .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (01) :126-132
[6]   Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells [J].
Hoppe, H ;
Niggemann, M ;
Winder, C ;
Kraut, J ;
Hiesgen, R ;
Hinsch, A ;
Meissner, D ;
Sariciftci, NS .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (10) :1005-1011
[7]   Charge transport in hybrid nanorod-polymer composite photovoltaic cells [J].
Huynh, WU ;
Dittmer, JJ ;
Teclemariam, N ;
Milliron, DJ ;
Alivisatos, AP ;
Barnham, KWJ .
PHYSICAL REVIEW B, 2003, 67 (11) :12
[8]   Efficient tandem polymer solar cells fabricated by all-solution processing [J].
Kim, Jin Young ;
Lee, Kwanghee ;
Coates, Nelson E. ;
Moses, Daniel ;
Nguyen, Thuc-Quyen ;
Dante, Mark ;
Heeger, Alan J. .
SCIENCE, 2007, 317 (5835) :222-225
[9]   High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J].
Li, G ;
Shrotriya, V ;
Huang, JS ;
Yao, Y ;
Moriarty, T ;
Emery, K ;
Yang, Y .
NATURE MATERIALS, 2005, 4 (11) :864-868
[10]   Hybrid photovoltaic devices of polymer and ZnO nanofiber composites [J].
Olson, DC ;
Piris, J ;
Collins, RT ;
Shaheen, SE ;
Ginley, DS .
THIN SOLID FILMS, 2006, 496 (01) :26-29