From the Von-Neumann equation to the Quantum Boltzmann equation in a deterministic framework

被引:20
作者
Castella, F
机构
[1] CNRS, F-35042 Rennes, France
[2] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
density matrix; Liouville equation; Pauli Master Equation; time-dependent scattering theory; Fermi's Golden Rule; oscillatory integrals in large dimensions;
D O I
10.1023/A:1010374114551
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we investigate the rigorous convergence of the Density Matrix Equation (or Quantum Lionville Equation) towards the Quantum Boltzmann Equation (or Pauli Master Equation). We start from the Density Matrix Equation posed on a cubic box of size L with periodic boundary conditions, describing the quantum motion of a particle in the box subject to an external potential V. The physics motivates the introduction of a damping term acting on the off-diagonal part of the density matrix, with a characteristic damping time alpha (-1). Then, the convergence can be proved by letting successively L tend to infinity and alpha to zero. The proof relies heavily on a lemma which allows to control some oscillatory integrals posed in large dimensional spaces. The present paper improves a previous announcement [CD].
引用
收藏
页码:387 / 447
页数:61
相关论文
共 45 条
[1]  
Bohm A, 1979, TEXTS MONOGRAPHS PHY
[2]   ON THE BOLTZMANN-EQUATION FOR THE LORENTZ GAS [J].
BOLDRIGHINI, C ;
BUNIMOVICH, LA ;
SINAI, YG .
JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (03) :477-501
[3]   On the distribution of free path lengths for the periodic Lorentz gas [J].
Bourgain, J ;
Golse, F ;
Wennberg, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 190 (03) :491-508
[4]  
Boyd R. W., 2003, NONLINEAR OPTICS
[5]  
CALECKI D, 1997, LECTURE
[6]   Convergence of the Von-Neumann equation towards the quantum Boltzmann equation in a deterministic framework [J].
Castella, F ;
Degond, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (03) :231-236
[7]  
Castella F, 1999, RAIRO-MATH MODEL NUM, V33, P329
[8]   Fokker-Planck equations as scaling limits of reversible quantum systems [J].
Castella, F ;
Erdos, L ;
Frommlet, F ;
Markowich, PA .
JOURNAL OF STATISTICAL PHYSICS, 2000, 100 (3-4) :543-601
[9]  
CASTELLA F, 1999, SEM EDP EC POL EXP N
[10]  
CASTELLA F, IN PRESS MATH P CAMB