Parameter expansion to accelerate EM: The PX-EM algorithm

被引:259
作者
Liu, CH [1 ]
Rubin, DB
Wu, YN
机构
[1] AT&T Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[2] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[3] Univ Michigan, Dept Stat, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
AECM; algorithms; covariance adjustment; ECM; ECME; factor analysis; multivariate t distribution; parameter expansion; Poisson imaging model; probit regression; random effects model;
D O I
10.1093/biomet/85.4.755
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The EM algorithm and its extensions are popular tools for modal estimation but are often criticised for their slow convergence. We propose a new method that can often make EM much faster. The intuitive idea is to use a 'covariance adjustment' to correct the analysis of the M step, capitalising on extra information captured in the imputed complete data. The way we accomplish this is by parameter expansion; we expand the complete-data model while preserving the observed-data model and use the expanded complete-data model to generate EM. This parameter-expanded EM, PX-EM, algorithm shares the simplicity and stability of ordinary EM, but has a faster rate of convergence since its M step performs a more efficient analysis. The PX-EM algorithm is illustrated for the multivariate t distribution, a random effects model, factor analysis, probit regression and a Poisson imaging model.
引用
收藏
页码:755 / 770
页数:16
相关论文
共 34 条
[1]  
[Anonymous], 1987, J AM STAT ASSOC
[2]  
[Anonymous], ENCY STAT SCI
[3]   CONVERGENCE BEHAVIOR OF THE EM ALGORITHM FOR THE MULTIVARIATE T-DISTRIBUTION [J].
ARSLAN, O ;
CONSTABLE, PDL ;
KENT, JT .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1995, 24 (12) :2981-3000
[4]  
Chambers J.M., 1991, Statistical Models in S
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]   SPACE-ALTERNATING GENERALIZED EXPECTATION-MAXIMIZATION ALGORITHM [J].
FESSLER, JA ;
HERO, AO .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (10) :2664-2677
[7]   EFFICIENT PARAMETRIZATIONS FOR NORMAL LINEAR MIXED MODELS [J].
GELFAND, AE ;
SAHU, SK ;
CARLIN, BP .
BIOMETRIKA, 1995, 82 (03) :479-488
[8]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[9]   MAXIMUM-LIKELIHOOD ESTIMATION FOR MIXED ANALYSIS OF VARIANCE MODEL [J].
HARTLEY, HO ;
RAO, JNK .
BIOMETRIKA, 1967, 54 :93-&
[10]   CONJUGATE-GRADIENT ACCELERATION OF THE EM ALGORITHM [J].
JAMSHIDIAN, M ;
JENNRICH, RI .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) :221-228