Determination of the glycosidic bond angle χ in RNA from cross-correlated relaxation of CH dipolar coupling and N chemical shift anisotropy

被引:31
作者
Duchardt, E
Richter, C
Ohlenschläger, O
Görlach, M
Wöhnert, J
Schwalbe, H
机构
[1] Goethe Univ Frankfurt, Inst Organ Chem & Chem Biol, Ctr Biomol Magnet Resonance, D-60439 Frankfurt, Germany
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
[3] IMB, Dept Mol Biophys, D-07745 Jena, Germany
关键词
D O I
10.1021/ja0367041
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new heteronuclear NMR pulse sequence, the quantitative Gamma(HCN) experiment, for the determination of the glycosidic torsion angle chi in C-13,N-15-labeled oligonucleotides is described. The Gamma(HCN) experiment allows measurement of CH dipole-dipole, N chemical shift anisotropy cross-correlated relaxation rates (Gamma(C1H1;N1)(DD,CSA) and Gamma(C2'H2',N1)(DD,CSA) for pyrimidines and Gamma(C1'H1'),(DD,CSA)(N9) and Gamma(C2'H2',N9)(DD,CSA) for purines). A nucleotide-specific parametrization for the dependence of these Gamma-rates on chi based on N-15 chemical shift tensors determined by solid-state NMR experiments on mononucleosides (Stueber, D.; Grant, D. M. J. Am. Chem. Soc. 2002, 124, 10539-10551) is presented. For a 14-mer and a 30-mer RNA of known structures, it is found that the Gamma(HCN) experiment offers a very sensitive parameter for changes in the angle chi and allows restraining of chi with an accuracy of around 10 degrees for residues which do not undergo conformational averaging. Therefore, the Gamma(HCN) experiment can be used for the determination of chi in addition to data derived from (3)J(C,H)-coupling constants. As shown for the 30-mer RNA, the derived torsion angle information can be incorporated as additional restraint, improving RNA structure calculations.
引用
收藏
页码:1962 / 1970
页数:9
相关论文
共 46 条
[1]   STRUCTURE OF THE P1 HELIX FROM GROUP-I SELF-SPLICING INTRONS [J].
ALLAIN, FHT ;
VARANI, G .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 250 (03) :333-353
[2]  
BAN N, 2000, SCIENCE, V289, P878
[3]   Side chain mobility as monitored by CH-CH cross correlation:: The example of cytochrome b5 [J].
Banci, L ;
Bertini, I ;
Felli, IC ;
Hajieva, P ;
Viezzoli, MS .
JOURNAL OF BIOMOLECULAR NMR, 2001, 20 (01) :1-10
[4]  
Batey RT, 1995, METHOD ENZYMOL, V261, P300
[5]   PREPARATION OF ISOTOPICALLY LABELED RIBONUCLEOTIDES FOR MULTIDIMENSIONAL NMR-SPECTROSCOPY OF RNA [J].
BATEY, RT ;
INADA, M ;
KUJAWINSKI, E ;
PUGLISI, JD ;
WILLIAMSON, JR .
NUCLEIC ACIDS RESEARCH, 1992, 20 (17) :4515-4523
[6]   Cross correlation between the dipole-dipole interaction and the curie spin relaxation: The effect of anisotropic magnetic susceptibility [J].
Bertini, I ;
Kowalewski, J ;
Luchinat, C ;
Parigi, G .
JOURNAL OF MAGNETIC RESONANCE, 2001, 152 (01) :103-108
[7]   Long-range magnetization transfer between uncoupled nuclei by dipole-dipole cross-correlated relaxation:: A precise probe of β-sheet geometry in proteins [J].
Boisbouvier, J ;
Bax, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (37) :11038-11045
[8]   Characterization of 15N chemical shift anisotropy from orientation-dependent changes to 15N chemical shifts in dilute bicelle solutions [J].
Boyd, J ;
Redfield, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (32) :7441-7442
[9]   Transverse relaxation optimized HCN experiment for nucleic acids: Combining the advantages of TROSY and MQ spin evolution [J].
Brutscher, B ;
Simorre, JP .
JOURNAL OF BIOMOLECULAR NMR, 2001, 21 (04) :367-372
[10]   Determination of aliphatic side-chain conformation using cross-correlated relaxation:: Application to an extraordinarily stable 2′-aminoethoxy-modified oligonucleotide triplex [J].
Carlomagno, T ;
Blommers, MJJ ;
Meiler, J ;
Cuenoud, B ;
Griesinger, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (30) :7364-7370