Determination of the glycosidic bond angle χ in RNA from cross-correlated relaxation of CH dipolar coupling and N chemical shift anisotropy

被引:31
作者
Duchardt, E
Richter, C
Ohlenschläger, O
Görlach, M
Wöhnert, J
Schwalbe, H
机构
[1] Goethe Univ Frankfurt, Inst Organ Chem & Chem Biol, Ctr Biomol Magnet Resonance, D-60439 Frankfurt, Germany
[2] MIT, Dept Chem, Cambridge, MA 02139 USA
[3] IMB, Dept Mol Biophys, D-07745 Jena, Germany
关键词
D O I
10.1021/ja0367041
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new heteronuclear NMR pulse sequence, the quantitative Gamma(HCN) experiment, for the determination of the glycosidic torsion angle chi in C-13,N-15-labeled oligonucleotides is described. The Gamma(HCN) experiment allows measurement of CH dipole-dipole, N chemical shift anisotropy cross-correlated relaxation rates (Gamma(C1H1;N1)(DD,CSA) and Gamma(C2'H2',N1)(DD,CSA) for pyrimidines and Gamma(C1'H1'),(DD,CSA)(N9) and Gamma(C2'H2',N9)(DD,CSA) for purines). A nucleotide-specific parametrization for the dependence of these Gamma-rates on chi based on N-15 chemical shift tensors determined by solid-state NMR experiments on mononucleosides (Stueber, D.; Grant, D. M. J. Am. Chem. Soc. 2002, 124, 10539-10551) is presented. For a 14-mer and a 30-mer RNA of known structures, it is found that the Gamma(HCN) experiment offers a very sensitive parameter for changes in the angle chi and allows restraining of chi with an accuracy of around 10 degrees for residues which do not undergo conformational averaging. Therefore, the Gamma(HCN) experiment can be used for the determination of chi in addition to data derived from (3)J(C,H)-coupling constants. As shown for the 30-mer RNA, the derived torsion angle information can be incorporated as additional restraint, improving RNA structure calculations.
引用
收藏
页码:1962 / 1970
页数:9
相关论文
共 46 条
[11]  
Cromsigt J, 2001, METHOD ENZYMOL, V338, P371
[12]   Density functional study of ribose and deoxyribose chemical shifts [J].
Dejaegere, AP ;
Case, DA .
JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (27) :5280-5289
[13]   OPTIMIZATION OF SHAPED SELECTIVE PULSES FOR NMR USING A QUATERNION DESCRIPTION OF THEIR OVERALL PROPAGATORS [J].
EMSLEY, L ;
BODENHAUSEN, G .
JOURNAL OF MAGNETIC RESONANCE, 1992, 97 (01) :135-148
[14]   The crystal structure of UUCG tetraloop [J].
Ennifar, E ;
Nikulin, A ;
Tishchenko, S ;
Serganov, A ;
Nevskaya, N ;
Garber, M ;
Ehresmann, B ;
Ehresmann, C ;
Nikonov, S ;
Dumas, P .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 304 (01) :35-42
[15]  
FARMER BT, 1994, J BIOMOL NMR, V4, P129
[16]   Determination of RNA sugar pucker mode from cross-correlated relaxation in solution NMR spectroscopy [J].
Felli, IC ;
Richter, C ;
Griesinger, C ;
Schwalbe, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (09) :1956-1957
[17]   Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids [J].
Fiala, R ;
Czernek, J ;
Sklenár, V .
JOURNAL OF BIOMOLECULAR NMR, 2000, 16 (04) :291-302
[18]   Model-independent analysis of 15N chemical shift anisotropy from NMR relaxation data.: Ubiquitin as a test example [J].
Fushman, D ;
Cowburn, D .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (28) :7109-7110
[19]   BAND-SELECTIVE RADIOFREQUENCY PULSES [J].
GEEN, H ;
FREEMAN, R .
JOURNAL OF MAGNETIC RESONANCE, 1991, 93 (01) :93-141
[20]  
GRZESIEK S, 1995, J BIOMOL NMR, V6, P335