Effects of microscopic disorder on the collective dynamics of globally coupled maps

被引:10
作者
De Monte, S
d'Ovidio, F
Chaté, H
Mosekilde, E
机构
[1] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[2] CEA, Serv Phys Etat Condense, Ctr Etudes Saclay, F-91191 Gif Sur Yvette, France
[3] Univ Balearic Isl, CSIC, IMEDEA, E-07071 Palma de Mallorca, Spain
[4] CNRS, UMR 7625, Ecole Normale Super, F-75230 Paris, France
[5] Ecole Normale Super, LMD, IPSL, F-75231 Paris, France
关键词
global coupling; synchronization; noise-induced phenomena; collective dynamics; macroscopically coherent dynamics; anomalous scaling;
D O I
10.1016/j.physd.2005.04.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the effect of independent additive noise on the synchronous dynamics of large populations of globally coupled maps. Our analysis is complementary to the approach taken by Teramae and Kuramoto [J. Teramae, Y. Kuramoto, Strong desynchronizing effects of weak noise in globally coupled systems, Phys. Rev. E 63 (2001) 036210] who pointed out the anomalous scaling properties preceding the loss of coherence. We focus on the macroscopic dynamics that remains deterministic at any noise level and differs from the microscopic one. Using properly defined order parameters, an analytical approach is proposed for describing the collective dynamics in terms of an approximate low-dimensional system. The systematic derivation of the macroscopic equations provides a link between the microscopic features of the population (single-element dynamics and noise distribution) and the properties of the emergent behaviour. The macroscopic bifurcations induced by noise are compared to those originating from parameter mismatches within the population. (c) 2005 Published by Elsevier B.V.
引用
收藏
页码:25 / 40
页数:16
相关论文
共 47 条
  • [1] Analytical results for coupled-map lattices with long-range interactions - art. no. 045202
    Anteneodo, C
    Pinto, SED
    Batista, AM
    Viana, RL
    [J]. PHYSICAL REVIEW E, 2003, 68 (04)
  • [2] Macroscopic chaos in globally coupled maps
    Cencini, M
    Falcioni, M
    Vergni, D
    Vulpiani, A
    [J]. PHYSICA D, 1999, 130 (1-2): : 58 - 72
  • [3] EVIDENCE OF COLLECTIVE BEHAVIOR IN CELLULAR AUTOMATA
    CHATE, H
    MANNEVILLE, P
    [J]. EUROPHYSICS LETTERS, 1991, 14 (05): : 409 - 413
  • [4] On the bifurcation structure of the mean-field fluctuation in the globally coupled tent map systems
    Chawanya, T
    Morita, S
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1998, 116 (1-2) : 44 - 70
  • [5] Sustained oscillations in living cells
    Dano, S
    Sorensen, PG
    Hynne, F
    [J]. NATURE, 1999, 402 (6759) : 320 - 322
  • [6] Synchronization of glycolytic oscillations in a yeast cell population
    Dano, S
    Hynne, F
    De Monte, S
    d'Ovidio, F
    Sorensen, PG
    Westerhoff, H
    [J]. FARADAY DISCUSSIONS, 2001, 120 : 261 - 276
  • [7] Noise-induced macroscopic bifurcations in globally coupled chaotic units -: art. no. 254101
    De Monte, S
    d'Ovidio, F
    Chaté, H
    Mosekilde, E
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (25) : 254101 - 1
  • [8] Coherent regimes of globally coupled dynamical systems
    De Monte, S
    d'Ovidio, F
    Mosekilde, E
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (05) : 4
  • [9] De Monte S, 2002, EUROPHYS LETT, V58, P21, DOI 10.1209/epl/i2002-00390-9
  • [10] STATISTICAL-MECHANICS OF A NON-LINEAR STOCHASTIC-MODEL
    DESAI, RC
    ZWANZIG, R
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) : 1 - 24