Macroscopic chaos in globally coupled maps

被引:34
作者
Cencini, M
Falcioni, M
Vergni, D
Vulpiani, A
机构
[1] Univ Rome La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[2] INFM, Unita Roma 1, Rome, Italy
[3] Ist Nazl Fis Nucl, Sez Roma 1, Rome, Italy
来源
PHYSICA D | 1999年 / 130卷 / 1-2期
关键词
macroscopically coherent dynamics; finite size Lyapunov exponent; globally coupled maps;
D O I
10.1016/S0167-2789(99)00015-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the coherent dynamics of globally coupled maps showing macroscopic chaos. With this term we indicate the hydrodynamical-like irregular behavior of some global observables, with typical times much longer than the times related to the evolution of the single (or microscopic) elements of the system. The usual Lyapunov exponent is not able to capture the essential features of this macroscopic phenomenon. Using the recently introduced notion of finite size Lyapunov exponent, we characterize, in a consistent way, these macroscopic behaviors. Basically, at small values of the perturbation we recover the usual (microscopic) Lyapunov exponent, while at larger values a sort of macroscopic Lyapunov exponent emerges, which can be much smaller than the former. A quantitative characterization of the chaotic motion at hydrodynamical level is then possible, even in the absence of the explicit equations for the time evolution of the macroscopic observables, (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:58 / 72
页数:15
相关论文
共 26 条
[1]   Dispersion of passive tracers in closed basins: Beyond the diffusion coefficient [J].
Artale, V ;
Boffetta, G ;
Celani, A ;
Cencini, M ;
Vulpiani, A .
PHYSICS OF FLUIDS, 1997, 9 (11) :3162-3171
[2]   Predictability in the large: An extension of the concept of Lyapunov exponent [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (01) :1-26
[3]   Growth of noninfinitesimal perturbations in turbulence [J].
Aurell, E ;
Boffetta, G ;
Crisanti, A ;
Paladin, G ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 1996, 77 (07) :1262-1265
[4]  
Benettin G., 1980, MECCANICA, V15, P9, DOI DOI 10.1007/BF02128236
[5]   Slow and fast dynamics in coupled systems: A time series analysis view [J].
Boffetta, G ;
Crisanti, A ;
Paparella, F ;
Provenzale, A ;
Vulpiani, A .
PHYSICA D, 1998, 116 (3-4) :301-312
[6]  
Boffetta G, 1998, J ATMOS SCI, V55, P3409, DOI 10.1175/1520-0469(1998)055<3409:AEOTLA>2.0.CO
[7]  
2
[8]   COLLECTIVE BEHAVIORS IN SPATIALLY EXTENDED SYSTEMS WITH LOCAL INTERACTIONS AND SYNCHRONOUS UPDATING [J].
CHATE, H ;
MANNEVILLE, P .
PROGRESS OF THEORETICAL PHYSICS, 1992, 87 (01) :1-60
[9]   Broken ergodicity and glassy behavior in a deterministic chaotic map [J].
Crisanti, A ;
Falcioni, M ;
Vulpiani, A .
PHYSICAL REVIEW LETTERS, 1996, 76 (04) :612-615
[10]   FLUCTUATIONS OF DYNAMIC SCALING INDEXES IN NONLINEAR-SYSTEMS [J].
ECKMANN, JP ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1986, 34 (01) :659-661