Biofilm-defective mutants of Bacillus subtilis

被引:20
作者
Chagneau, C [1 ]
Saier, MH [1 ]
机构
[1] Univ Calif San Diego, Div Biol Sci, La Jolla, CA 92093 USA
关键词
biofilms; Bacillus subtilis; mutants; motility; glutamate synthase (GltAB); aminopeptidase (AmpS);
D O I
10.1159/000085790
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Many bacteria can adopt organized, sessile, communal lifestyles. The gram-positive bacterium, Bacillus subtilis, forms biofilms on solid surfaces and at air-liquid interfaces, and biofilm development is dependent on environmental conditions. We demonstrate that biofilm formation by B. subtilis strain JH642 can be either activated or repressed by glucose, depending on the growth medium used, and that these glucose effects are at least in part mediated by the catabolite control protein, CcpA. Starting with a chromosomal Tn917-LTV3 insertional library, we isolated mutants that are defective for biofilm formation. The biofilm defects of these mutants were observable in both rich and minimal media, and both on polyvinylchloride abiotic surfaces and in borosilicate tubes. Two mutants were defective in flagellar synthesis. Chemotaxis was shown to be less important for biofilm formation than was flagellar-driven motility. Although motility is known to be required for biofilm formation in other bacteria, this had not previously been demonstrated for B. subtilis. In addition, our study suggests roles for glutamate synthase, GItAB, and an aminopeptidase, AmpS. The loss of these enzymes did not decrease growth or cellular motility but had dramatic effects on biofilm formation under all conditions assayed. The effect of the gltAB defect on biofilm formation could not be due to a decrease in poly-gamma-glutamate synthesis since this polymer proved to be nonessential for robust biofilm formation. High exogenous concentrations of glutamate, aspartate, glutamine or proline did not override the glutamate synthase requirement. This is the first report showing that glutamate synthase and a cytoplasmic aminopeptidase play roles in bacterial biofilm formation, Possible mechanistic implications and potential roles of biofilm formation in other developmental processes are discussed. Copyright (C) 2004 S. Karger AG, Basel.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 71 条
[1]  
Aizawa S.-I., 2002, Bacillus subtilis and Its Closest Relatives: From Genes to Cells, P437
[2]   Biochemistry and molecular genetics of poly-γ-glutamate synthesis [J].
Ashiuchi, M ;
Misono, H .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2002, 59 (01) :9-14
[3]  
Ashiuchi M, 1998, J BIOCHEM-TOKYO, V123, P1156
[4]  
Belitsky B.R., 2002, BACILLUS SUBTILIS IT, P203
[5]   ADAPTIVE SELF-ORGANIZATION DURING GROWTH OF BACTERIAL COLONIES [J].
BENJACOB, E ;
SHMUELI, H ;
SHOCHET, O ;
TENENBAUM, A .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1992, 187 (3-4) :378-424
[6]   Genes involved in formation of structured multicellular communities by Bacillus subtilis [J].
Branda, SS ;
González-Pastor, JE ;
Dervyn, E ;
Ehrlich, SD ;
Losick, R ;
Kolter, R .
JOURNAL OF BACTERIOLOGY, 2004, 186 (12) :3970-3979
[7]   Fruiting body formation by Bacillus subtilis [J].
Branda, SS ;
González-Pastor, JE ;
Ben-Yehuda, S ;
Losick, R ;
Kolter, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) :11621-11626
[8]   The Transporter Classification (TC) system, 2002 [J].
Busch, W ;
Saier, MH .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2002, 37 (05) :287-337
[9]   INSERTIONAL MUTAGENESIS OF LISTERIA-MONOCYTOGENES WITH A NOVEL TN917 DERIVATIVE THAT ALLOWS DIRECT CLONING OF DNA FLANKING TRANSPOSON INSERTIONS [J].
CAMILLI, A ;
PORTNOY, DA ;
YOUNGMAN, P .
JOURNAL OF BACTERIOLOGY, 1990, 172 (07) :3738-3744
[10]   Bacterial biofilms: A common cause of persistent infections [J].
Costerton, JW ;
Stewart, PS ;
Greenberg, EP .
SCIENCE, 1999, 284 (5418) :1318-1322