Survey of forkhead domain encoding genes in the Drosophila genome:: Classification and embryonic expression patterns

被引:70
作者
Lee, HH [1 ]
Frasch, M [1 ]
机构
[1] CUNY Mt Sinai Sch Med, Brookdale Dept Mol Cell & Dev Biol, New York, NY 10029 USA
关键词
forkhead domain; winged helix domain; embryo development; phylogenetic relationships;
D O I
10.1002/dvdy.10443
中图分类号
R602 [外科病理学、解剖学]; R32 [人体形态学];
学科分类号
100101 ;
摘要
Genetic approaches in Drosophila led to the identification of Forkhead, the prototype of forkhead domain transcription factors that are now known to comprise an evolutionarily conserved family of proteins with essential roles in development and differentiation. Sequence analysis of the recently published genomic scaffold sequence from Drosophila melanogaster has allowed us to determine the presumably full complement of forkhead domain encoding genes in this species. We show herein that the Drosophila genome contains 17 forkhead domain encoding genes; 13 of these genes have orthologs in chordate species, and their products can be assigned to 10 of the 17 forkhead domain subclasses known from chordates. One Drosophila forkhead domain gene only has a Caenorhabditis elegans ortholog and may represent a subclass that is absent in chordates, while the remaining three cannot be classified. We present the mRNA expression patterns of seven previously uncharacterized members of this gene family and show that they are expressed in tissues from all three germ layers, including central and peripheral nervous system, epidermis, salivary gland primordia, endoderm, somatic mesoderm, and hemocyte progenitors. Furthermore, the expression patterns of two of these genes, fd19B and fd102C, suggest a role for them as gap genes during early embryonic head segmentation.
引用
收藏
页码:357 / 366
页数:10
相关论文
共 59 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]   Salivary gland development in Drosophila melanogaster [J].
Andrew, DJ ;
Henderson, KD ;
Seshaiah, P .
MECHANISMS OF DEVELOPMENT, 2000, 92 (01) :5-17
[3]  
Barr FG, 1997, CURR TOP MICROBIOL, V220, P113
[4]  
Bhat KM, 2000, DEVELOPMENT, V127, P655
[5]   Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse [J].
Biggs, WH ;
Cavenee, WK ;
Arden, KC .
MAMMALIAN GENOME, 2001, 12 (06) :416-425
[6]   Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway [J].
Brunet, A ;
Datta, SR ;
Greenberg, ME .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :297-305
[7]   Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a) [J].
Brunet, A ;
Park, J ;
Tran, H ;
Hu, LS ;
Hemmings, BA ;
Greenberg, ME .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (03) :952-965
[8]   FUNCTIONAL REDUNDANCY - THE RESPECTIVE ROLES OF THE 2 SLOPPY PAIRED GENES IN DROSOPHILA SEGMENTATION [J].
CADIGAN, KM ;
GROSSNIKLAUS, U ;
GEHRING, WJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (14) :6324-6328
[9]   FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance [J].
Cederberg, A ;
Gronning, LM ;
Ahrén, B ;
Taskén, K ;
Carlsson, P ;
Enerbäck, S .
CELL, 2001, 106 (05) :563-573
[10]   JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome [J].
Chatila, TA ;
Blaeser, F ;
Ho, N ;
Lederman, HM ;
Voulgaropoulos, C ;
Helms, C ;
Bowcock, AM .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (12) :R75-R81