3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection

被引:1450
作者
Dong, Xiao-Chen [1 ]
Xu, Hang [1 ]
Wang, Xue-Wan [2 ]
Huang, Yin-Xi [2 ]
Chan-Park, Mary B. [2 ]
Zhang, Hua [3 ]
Wang, Lian-Hui [1 ]
Huang, Wei [1 ]
Chen, Peng [2 ]
机构
[1] Nanjing Univ Posts & Telecommun, IAM, KLOEID, Nanjing 210046, Jiangsu, Peoples R China
[2] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637457, Singapore
[3] Nanyang Technol Univ, Sch Mat Sci & Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
3D graphene; cobalt oxide; supercapacitor; enzymeless detection; CHEMICAL SENSORS; COMPOSITES; DEPOSITION; NETWORKS; SHEETS; FILMS;
D O I
10.1021/nn300097q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Using a simple hydrothermal procedure; cobalt oxide (Co3O4) nanowires were in situ synthesized on three-dimensional (3D) graphene foam grown by chemical vapor deposition. The structure and morphology of the resulting 3D graphene/Co3O4 composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy, The 3D graphene/Co3O4 composite was used as the monolithic free-standing electrode for supercapacitor application and for enzymeless electrochemical detection of glucose. We demonstrate that it is capable of delivering high specific capacitance of similar to 1100 F g(-1) at a current density of 10 A g(-1) with excellent cycling stability, and it can detect glucose with a ultrahigh sensitivity of 3.39 mA mM(-1) cm(-2) and a remarkable lower detection limit of <25 nM (S/N = 8.5).
引用
收藏
页码:3206 / 3213
页数:8
相关论文
共 52 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Preparation of Novel 3D Graphene Networks for Supercapacitor Applications [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Lu, Gang ;
Huang, Xiao ;
Yan, Qingyu ;
Zhang, Qichun ;
Zhang, Hua .
SMALL, 2011, 7 (22) :3163-3168
[3]   Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions [J].
Casella, IG ;
Gatta, M .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2002, 534 (01) :31-38
[4]   Water-Dispersible Magnetite-Reduced Graphene Oxide Composites for Arsenic Removal [J].
Chandra, Vimlesh ;
Park, Jaesung ;
Chun, Young ;
Lee, Jung Woo ;
Hwang, In-Chul ;
Kim, Kwang S. .
ACS NANO, 2010, 4 (07) :3979-3986
[5]   Graphene Oxide-MnO2 Nanocomposites for Supercapacitors [J].
Chen, Sheng ;
Zhu, Junwu ;
Wu, Xiaodong ;
Han, Qiaofeng ;
Wang, Xin .
ACS NANO, 2010, 4 (05) :2822-2830
[6]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[7]   Graphene-Based Flexible Supercapacitors: Pulse-Electropolymerization of Polypyrrole on Free-Standing Graphene Films [J].
Davies, Aaron ;
Audette, Philippe ;
Farrow, Blake ;
Hassan, Fathy ;
Chen, Zhongwei ;
Choi, Ja-Yeon ;
Yu, Aiping .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (35) :17612-17620
[8]   Electrospun Co3O4 nanofibers for sensitive and selective glucose detection [J].
Ding, Yu ;
Wang, Ying ;
Su, Liang ;
Bellagamba, Michael ;
Zhang, Heng ;
Lei, Yu .
BIOSENSORS & BIOELECTRONICS, 2010, 26 (02) :542-548
[9]   Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure [J].
Dong, Xiaochen ;
Wang, Peng ;
Fang, Wenjing ;
Su, Ching-Yuan ;
Chen, Yu-Hsin ;
Li, Lain-Jong ;
Huang, Wei ;
Chen, Peng .
CARBON, 2011, 49 (11) :3672-3678
[10]   In Situ Synthesis of Reduced Graphene Oxide and Gold Nanocomposites for Nanoelectronics and Biosensing [J].
Dong, Xiaochen ;
Huang, Wei ;
Chen, Peng .
NANOSCALE RESEARCH LETTERS, 2011, 6 :1-6