Vagal and hormonal gut-brain communication: from satiation to satisfaction

被引:217
作者
Berthoud, H. -R. [1 ]
机构
[1] Louisiana State Univ Syst, Pennington Biomed Res Ctr, Neurobiol Nutr Lab, Baton Rouge, LA 70808 USA
关键词
food intake; gut hormones; obesity; taste in the gut; vagal mechanosensors;
D O I
10.1111/j.1365-2982.2008.01104.x
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Studying communication between the gut and the brain is as relevant and exciting as it has been since Pavlov's discoveries a century ago. Although the efferent limb of this communication has witnessed significant advances, it is the afferent, or sensory, limb that has recently made for exciting news. It is now clear that signals from the gut are crucial for the control of appetite and the regulation of energy balance, glucose homeostasis, and more. Ghrelin, discovered just a few years ago, is the first gut hormone that increases appetite, and it may be involved in eating disorders. The stable analogue of glucagon-like peptide-1 has rapidly advanced to one of the most promising treatment options for type-2 diabetes. Changes in the signalling patterns of these and other gut hormones best explain the remarkable capacity of gastric bypass surgery to lower food intake and excess body weight. Given the enormous societal implications of the obesity epidemic, these are no small feats. Together with the older gut hormone cholecystokinin and abundant vagal mechanosensors, the gut continuously sends information to the brain regarding the quality and quantity of ingested nutrients, not only important for satiation and meal termination, but also for the appetitive phase of ingestive behaviour and the patterning of meals within given environmental constraints. By acting not only on brainstem and hypothalamus, this stream of sensory information from the gut to the brain is in a position to generate a feeling of satisfaction and happiness as observed after a satiating meal and exploited in vagal afferent stimulation for depression.
引用
收藏
页码:64 / 72
页数:9
相关论文
共 68 条
[1]   The inhibitory effects of peripheral administration of peptide YY3-36 and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway [J].
Abbott, CR ;
Monteiro, M ;
Small, CJ ;
Sajedi, A ;
Smith, KL ;
Parkinson, JRC ;
Ghatei, MA ;
Bloom, SR .
BRAIN RESEARCH, 2005, 1044 (01) :127-131
[2]   Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite [J].
Abizaid, Alfonso ;
Liu, Zhong-Wu ;
Andrews, Zane B. ;
Shanabrough, Marya ;
Borok, Erzsebet ;
Elsworth, John D. ;
Roth, Robert H. ;
Sleeman, Mark W. ;
Picciotto, Marina R. ;
Tschop, Matthias H. ;
Gao, Xiao-Bing ;
Horvath, Tamas L. .
JOURNAL OF CLINICAL INVESTIGATION, 2006, 116 (12) :3229-3239
[3]   Gut vagal afferents are not necessary for the eating-stimulatory effect of intraperitoneally injected Ghrelin in the rat [J].
Arnold, Myrtha ;
Mura, Anna ;
Langhans, Wolfgang ;
Geary, Nori .
JOURNAL OF NEUROSCIENCE, 2006, 26 (43) :11052-11060
[4]   PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans [J].
Batterham, Rachel L. ;
ffytche, Dominic H. ;
Rosenthal, J. Miranda ;
Zelaya, Fernando O. ;
Barker, Gareth J. ;
Withers, Dominic J. ;
Williams, Steven C. R. .
NATURE, 2007, 450 (7166) :106-+
[5]   Critical role for peptide YY in protein-mediated satiation and body-weight regulation [J].
Batterham, Rachel L. ;
Heffron, Helen ;
Kapoor, Saloni ;
Chivers, Joanna E. ;
Chandarana, Keval ;
Herzog, Herbert ;
Le Roux, Carel W. ;
Thomas, E. Louise ;
Bell, Jimmy D. ;
Withers, Dominic J. .
CELL METABOLISM, 2006, 4 (03) :223-233
[6]   Gut hormone PYY3-36 physiologically inhibits food intake [J].
Batterham, RL ;
Cowley, MA ;
Small, CJ ;
Herzog, H ;
Cohen, MA ;
Dakin, CL ;
Wren, AM ;
Brynes, AE ;
Low, MJ ;
Ghatei, MA ;
Cone, RD ;
Bloom, SR .
NATURE, 2002, 418 (6898) :650-654
[7]  
Berthoud HR, 1996, ACTA ANAT, V156, P123
[8]   Functional and chemical anatomy of the afferent vagal system [J].
Berthoud, HR ;
Neuhuber, WL .
AUTONOMIC NEUROSCIENCE-BASIC & CLINICAL, 2000, 85 (1-3) :1-17
[9]   Multiple neural systems controlling food intake and body weight [J].
Berthoud, HR .
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2002, 26 (04) :393-428
[10]   Cocaine- and amphetamine-regulated transcript in the rat vagus nerve:: A putative mediator of cholecystokinin-induced satiety [J].
Broberger, C ;
Holmberg, K ;
Kuhar, MJ ;
Hökfelt, T .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (23) :13506-13511