Unified dual for bi-class SVM approaches

被引:19
作者
González, L
Angulo, C
Velasco-Morente, F
Català, A
机构
[1] Univ Seville, Dept Econ Aplicada 1, E-41018 Seville, Spain
[2] Univ Politecn Cataluna, GREC, E-08800 Vilanova I La Geltru, Spain
关键词
SVM; binary classification; large margin principle; kernels; QP-problem;
D O I
10.1016/j.patcog.2005.03.019
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
SVM theory was originally developed on the basis of a separable binary classification problem, and other approaches have been later introduced. In this paper, we demonstrated that all these approaches admit the same dual problem formulation. (c) 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1772 / 1774
页数:3
相关论文
共 4 条
[1]  
Bredensteiner E.J., 2000, ICML, P57
[2]   Maximal margin classification for metric spaces [J].
Hein, M ;
Bousquet, O .
LEARNING THEORY AND KERNEL MACHINES, 2003, 2777 :72-86
[3]  
SHASHUSA A, NEURAL INF PROCESS I, P16
[4]  
Vapnik, 1998, STAT LEARNING THEORY