Soft computing (SC) is an evolving collection of methodologies, which aims to exploit tolerance for imprecision, uncertainty, and partial truth to achieve robustness, tractability, and low cost. SC provides an attractive opportunity to represent the ambiguity in human thinking with real life uncertainty); Fuzzy logic (FL), neural networks (NN), and evolutionary computation (EC) are the core methodologies of soft computing. However, FL. NN, and EC should not be viewed as competing with each other, but synergistic and complementary instead. SC has been theoretically developed for the past decade, since L A. Zadeh proposed the concept in the early 1990s. Soft computing is causing a paradigm shift (breakthrough) in engineering and science fields since it can solve problems that have not been able to be solved by traditional analytic methods [tractability (TR)]. In addition, SC yields rich knowledge representation (symbol and pattern), flexible knowledge acquisition (by machine learning from data and by interviewing experts), and flexible knowledge processing (inference by interfacing between symbolic and pattern knowledge), which enable intelligent systems to be constructed at low cost [high machine intelligence quotient (HMIQ)]. This paper reviews applications of SC in several industrial fields to show the various innovations by TR, HMIQ, and low cost in industries that have been made possible by the use of SC. Our paper intends to remove the gap between theory and practice and attempts to learn how to apply soft computing practically to industrial systems from examples/analogy reviewing many application papers.