Finding independent sets in a graph using continuous multivariable polynomial formulations

被引:26
作者
Abello, J
Butenko, S
Pardalos, PM
Resende, MGC
机构
[1] AT&T Labs Res, Shannon Lab, Florham Pk, NJ 07932 USA
[2] Univ Florida, Dept Ind & Syst Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
maximum independent set; continuous approach; global optimization;
D O I
10.1023/A:1011968411281
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Two continuous formulations of the maximum independent set problem on a graph G=(V,E) are considered. Both cases involve the maximization of an n-variable polynomial over the n-dimensional hypercube, where n is the number of nodes in G. Two (polynomial) objective functions F(x) and H(x) are considered. Given any solution to x(0) in the hypercube, we propose two polynomial-time algorithms based on these formulations, for finding maximal independent sets with cardinality greater than or equal to F(x(0)) and H(x(0)), respectively. A relation between the two approaches is studied and a more general statement for dominating sets is proved. Results of preliminary computational experiments for some of the DIMACS clique benchmark graphs are presented.
引用
收藏
页码:111 / 137
页数:27
相关论文
共 26 条
[1]  
Abello J., 1999, DIMACS SERIES DISCRE, P119, DOI DOI 10.1007/3-540-68530-8_1
[2]  
AVONDOBODENO G, 1962, EC APPL THEORY GRAPH
[3]   FINDING A MAXIMUM CLIQUE IN AN ARBITRARY GRAPH [J].
BALAS, E ;
YU, CS .
SIAM JOURNAL ON COMPUTING, 1986, 15 (04) :1054-1068
[4]  
Berge C., 1962, THEORY GRAPHS ITS AP
[5]  
Bomze IM, 2000, NONCON OPTIM ITS APP, V42, P78
[6]  
BOMZE IM, 1997, DEV GLOBAL OPTIMIZAT, P95
[7]  
Bomze IM, 1999, Handbook of Combinatorial Optimization, P1, DOI DOI 10.1007/978-1-4757-3023-4_1
[8]   IMPROVED LOWER BOUNDS ON K-INDEPENDENCE [J].
CARO, Y ;
TUZA, Z .
JOURNAL OF GRAPH THEORY, 1991, 15 (01) :99-107
[9]  
Deo N., 1974, GRAPH THEORY APPL EN, V1st
[10]  
Diestel R., 1997, Graph Theory