FFAS03: a server for profile-profile sequence alignments

被引:381
作者
Jaroszewski, L
Rychlewski, L
Li, ZW
Li, WZ
Godzik, A
机构
[1] Burnham Inst, Bioinformat Program, La Jolla, CA 92037 USA
[2] BioInfoBank Inst, PL-60744 Poznan, Poland
关键词
D O I
10.1093/nar/gki418
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The FFAS03 server provides a web interface to the third generation of the profile-profile alignment and fold-recognition algorithm of fold and function assignment system (FFAS) [L. Rychlewski, L. Jaroszewski, W. Li and A. Godzik (2000), Protein Sci., 9, 232-241]. Profile-profile algorithms use information present in sequences of homologous proteins to amplify the patterns defining the family. As a result, they enable detection of remote homologies beyond the reach of other methods. FFAS, initially developed in 2000, is consistently one of the best ranked fold prediction methods in the CAFASP and LiveBench competitions. It is also used by several fold-recognition consensus methods and meta-servers. The FFAS03 server accepts a user supplied protein sequence and automatically generates a profile, which is then compared with several sets of sequence profiles of proteins from PDB, COG, PFAM and SCOP. The profile databases used by the server are automatically updated with the latest structural and sequence information. The server provides access to the alignment analysis, multiple alignment, and comparative modeling tools. Access to the server is open for both academic and commercial researchers. The FFAS03 server is available at http://ffas.burnham.org.
引用
收藏
页码:W284 / W288
页数:5
相关论文
共 33 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
[3]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[4]   LiveBench-1: Continuous benchmarking of protein structure prediction servers [J].
Bujnicki, JM ;
Elofsson, A ;
Fischer, D ;
Rychlewski, L .
PROTEIN SCIENCE, 2001, 10 (02) :352-361
[5]   A graph-theory algorithm for rapid protein side-chain prediction [J].
Canutescu, AA ;
Shelenkov, AA ;
Dunbrack, RL .
PROTEIN SCIENCE, 2003, 12 (09) :2001-2014
[6]   The ASTRAL Compendium in 2004 [J].
Chandonia, JM ;
Hon, G ;
Walker, NS ;
Lo Conte, L ;
Koehl, P ;
Levitt, M ;
Brenner, SE .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D189-D192
[7]  
Fischer D, 1999, PROTEINS, P209
[8]   3D-Jury: a simple approach to improve protein structure predictions [J].
Ginalski, K ;
Elofsson, A ;
Fischer, D ;
Rychlewski, L .
BIOINFORMATICS, 2003, 19 (08) :1015-1018
[9]   Domain analysis of the tubulin cofactor system: a model for tubulin folding and dimerization [J].
Grynberg, M ;
Jaroszewski, L ;
Godzik, A .
BMC BIOINFORMATICS, 2003, 4 (1)
[10]   A DATABASE OF PROTEIN-STRUCTURE FAMILIES WITH COMMON FOLDING MOTIFS [J].
HOLM, L ;
OUZOUNIS, C ;
SANDER, C ;
TUPAREV, G ;
VRIEND, G .
PROTEIN SCIENCE, 1992, 1 (12) :1691-1698