Monotones and invariants for multi-particle quantum states

被引:219
作者
Barnum, H
Linden, N
机构
[1] Univ Bristol, Dept Comp Sci, Bristol BS8 1UB, Avon, England
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 35期
关键词
D O I
10.1088/0305-4470/34/35/305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce new entanglement monotones which generalize, to the case of many parties, those which give rise to the majorization-based partial ordering of bipartite states' entanglement. We give some examples of restrictions they impose on deterministic and probabilistic conversion between multipartite states via local actions and classical communication. These include restrictions which do not follow from any bipartite considerations. We derive supermultiplicativity relations between each state's monotones and the monotones for collective processing when the parties share several states. We also investigate polynomial invariants under local unitary transformations, and show that a large class of these are invariant under collective unitary processing and also multiplicative, putting restrictions, for example, on the exact conversion of multiple copies of one state to multiple copies of another.
引用
收藏
页码:6787 / 6805
页数:19
相关论文
共 25 条
[1]  
ALBERTI PM, 1981, STOCHASTICITY PARTIA
[2]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[3]   Concentrating partial entanglement by local operations [J].
Bennett, CH ;
Bernstein, HJ ;
Popescu, S ;
Schumacher, B .
PHYSICAL REVIEW A, 1996, 53 (04) :2046-2052
[4]  
BHATIA R, 1997, MATRIC ANAL
[5]  
COFFMAN V, 1999, QUANTPH9907047 LANL, V2
[6]   Three qubits can be entangled in two inequivalent ways [J].
Dur, W. ;
Vidal, G. ;
Cirac, J.I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (06) :062314-062311
[7]  
Grassl M., COMMUNICATION
[8]  
HARDY L, 1999, QUANTPH9903001, V2
[9]  
Horn R. A., 1986, Matrix analysis
[10]  
JENSEN JG, 2000, QUANTPH0006049 ARXIV, V2