Data compression with ENO schemes:: A case study

被引:50
作者
Amat, S [1 ]
Aràndiga, F
Cohen, A
Donat, R
Garcia, G
von Oehsen, M
机构
[1] Univ Valencia, Dept Matemat Aplicada, Valencia, Spain
[2] Univ Paris 06, Lab Anal Numer, Paris, France
[3] Med Univ Lubeck, Math Inst, D-23564 Lubeck, Germany
关键词
D O I
10.1006/acha.2001.0356
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the compresion properties of ENO-type nonlinear multiresolution transformations on digital images. Specific error control algorithms are used to ensure a prescribed accuracy. The numerical results reveal that these methods strongly outperform the more classical wavelet decompositions in the case of piecewise smooth geometric images. (C) 2001 Academic Press.
引用
收藏
页码:273 / 288
页数:16
相关论文
共 17 条
[1]  
AMAT S, GRAN994 U VAL DEP MA
[2]   Nonlinear multiscale decompositions:: The approach of A.!Harten [J].
Aràndiga, F ;
Donat, R .
NUMERICAL ALGORITHMS, 2000, 23 (2-3) :175-216
[3]  
CLAYPOOLE RL, UNPUB NONLINEAR WAVE
[4]   BIORTHOGONAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
COHEN, A ;
DAUBECHIES, I ;
FEAUVEAU, JC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (05) :485-560
[5]  
COHEN A, IN PRESS APPL COMPUT
[6]  
COHEN A, 1999, 174 IGPM RWTH AACH
[7]  
Daubechies I., 1992, CBMS NSF SERIES APPL, V61
[8]  
DEVORE R, 1997, ACTA NUMER, P51
[9]  
GUICHAOVA M, 1999, THESIS U MEDITERRANE
[10]   DISCRETE MULTIRESOLUTION ANALYSIS AND GENERALIZED WAVELETS [J].
HARTEN, A .
APPLIED NUMERICAL MATHEMATICS, 1993, 12 (1-3) :153-192