As models of physiological regulation of body weight, adiposity and appetite, seasonal mammals offer unique opportunities for manipulating fundamental regulatory processes that may not be available in the more frequently-studied laboratory rodents. Seasonal weight and intake cycles are anticipatory rather than reactive in nature, being manifest despite the availability of ad libitum supplies of food. They are exhibited despite all other environmental variables being held constant, and are reversible. Appropriate body weight appears to be a sliding set point in many seasonal mammals, which can move in either direction, largely independently of age. While few data are available other than from rats and mice, there appears to be a strong commonality of central neuroendocrine and peripheral signalling systems between seasonal and non-seasonal mammals, although the conditions under which endogenous regulatory pathways are activated may differ significantly between species. Peripheral and central signalling systems implicated in the regulation of appetite and body weight may be modulated during seasonal transitions. Discussion will concentrate on hypothalamic neuropeptides, gastrointestinal satiety peptides, the recently-described peptide, leptin, that is secreted by adipose tissue, and the interactions between these regulatory components. (C) 1998 Elsevier Science Inc. All rights reserved.