On model selection and model misspecification in causal inference

被引:123
作者
Vansteelandt, Stijn [1 ]
Bekaert, Maarten [1 ]
Claeskens, Gerda [2 ]
机构
[1] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
[2] Katholieke Univ Leuven, OR & Business Stat & Leuven Stat Res Ctr, B-3000 Louvain, Belgium
关键词
causal inference; confounder-selection; double robustness; influential weights; model selection; model uncertainty; propensity score; MARGINAL STRUCTURAL MODELS; CONFOUNDER-SELECTION; VARIABLE SELECTION; RANDOMIZED-TRIALS; PROPENSITY SCORE; ADJUSTMENT; IDENTIFIABILITY; EFFICIENCY; SHRINKAGE; KNOWLEDGE;
D O I
10.1177/0962280210387717
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Standard variable selection procedures, primarily developed for the construction of outcome prediction models, are routinely applied when assessing exposure effects in observational studies. We argue that this tradition is sub-optimal and prone to yield bias in exposure effect estimators as well as their corresponding uncertainty estimators. We weigh the pros and cons of confounder-selection procedures and propose a procedure directly targeting the quality of the exposure effect estimator. We further demonstrate that certain strategies for inferring causal effects have the desirable features (a) of producing (approximately) valid confidence intervals, even when the confounder-selection process is ignored, and (b) of being robust against certain forms of misspecification of the association of confounders with both exposure and outcome.
引用
收藏
页码:7 / 30
页数:24
相关论文
共 64 条
[1]  
[Anonymous], 2006, Model selection and model averaging, DOI DOI 10.1017/CBO9780511790485.003
[2]  
[Anonymous], 2009, CAUSALITY MODELS REA
[3]   Variable selection for propensity score models [J].
Brookhart, M. Alan ;
Schneeweiss, Sebastian ;
Rothman, Kenneth J. ;
Glynn, Robert J. ;
Avorn, Jerry ;
Sturmer, Til .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2006, 163 (12) :1149-1156
[4]   A semiparametric model selection criterion with applications to the marginal structural model [J].
Brookhart, MA ;
van der Laan, MJ .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (02) :475-498
[5]   Confounder selection in environmental epidemiology: Assessment of health effects of prenatal mercury exposure [J].
Budtz-Jorgensen, Esben ;
Keiding, Niels ;
Grandjean, Philippe ;
Weihe, Pal .
ANNALS OF EPIDEMIOLOGY, 2007, 17 (01) :27-35
[6]   Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data [J].
Cao, Weihua ;
Tsiatis, Anastasios A. ;
Davidian, Marie .
BIOMETRIKA, 2009, 96 (03) :723-734
[7]   The focused information criterion [J].
Claeskens, G ;
Hjort, NL .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (464) :900-916
[8]   Variable selection for logistic regression using a prediction-focused information criterion [J].
Claeskens, Gerda ;
Croux, Christophe ;
Van Kerckhoven, Johan .
BIOMETRICS, 2006, 62 (04) :972-979
[9]   The effectiveness of right heart catheterization in the initial care of critically ill patients [J].
Connors, AF ;
Speroff, T ;
Dawson, NV ;
Thomas, C ;
Harrell, FE ;
Wagner, D ;
Desbiens, N ;
Goldman, L ;
Wu, AW ;
Califf, RM ;
Fulkerson, WJ ;
Vidaillet, H ;
Broste, S ;
Bellamy, P ;
Lynn, J ;
Knaus, WA .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1996, 276 (11) :889-897
[10]   Adjustment uncertainty in effect estimation [J].
Crainiceanu, Ciprian M. ;
Dominici, Francesca ;
Parmigiani, Giovanni .
BIOMETRIKA, 2008, 95 (03) :635-651