The physiology and pathophysiology of nitric oxide in the brain

被引:590
作者
Guix, FX [1 ]
Uribesalgo, I [1 ]
Coma, M [1 ]
Muñoz, FJ [1 ]
机构
[1] Univ Pompeu Fabra, Dept Ciencies Expt Salut, Unitat Senyalitz Cellular, Lab Fisiol Mol, E-08003 Barcelona, Spain
关键词
D O I
10.1016/j.pneurobio.2005.06.001
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Nitric oxide (NO) is a molecule with pleiotropic effects in different tissues. NO is synthesized by NO synthases (NOS), a family with four major types: endothelial, neuronal, inducible and mitochondrial. They can be found in almost all the tissues and they can even co-exist in the same tissue. NO is a well-known vasorelaxant agent, but it works as a neurotransmitter when produced by neurons and is also involved in defense functions when it is produced by immune and glial cells. NO is thermodynamically unstable and tends to react with other molecules, resulting in the oxidation, nitrosylation or nitration of proteins, with the concomitant effects on many cellular mechanisms. NO intracellular signaling involves the activation of guanylate cyclase but it also interacts with MAPKs, apoptosis-related proteins, and mitochondrial respiratory chain or anti-proliferative molecules. It also plays a role in post-translational modification of proteins and protein degradation by the proteasome. However, under pathophysiological conditions NO has damaging effects. In disorders involving oxidative stress, such as Alzheimer's disease, stroke and Parkinson's disease, NO increases cell damage through the formation of highly reactive peroxynitrite. The paradox of beneficial and damaging effects of NO will be discussed in this review. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:126 / 152
页数:27
相关论文
共 409 条
[11]   Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis [J].
Bagasra, O ;
Michaels, FH ;
Zheng, YM ;
Bobroski, LE ;
Spitsin, SV ;
Fu, ZF ;
Tawadros, R ;
Koprowski, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (26) :12041-12045
[12]   NITRIC OXIDE-DEPENDENT PARASYMPATHETIC SIGNALING IS DUE TO ACTIVATION OF CONSTITUTIVE ENDOTHELIAL (TYPE-III) NITRIC-OXIDE SYNTHASE IN CARDIAC MYOCYTES [J].
BALLIGAND, JL ;
KOBZIK, L ;
HAN, XQ ;
KAYE, DM ;
BELHASSEN, L ;
OHARA, DS ;
KELLY, RA ;
SMITH, TW ;
MICHEL, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (24) :14582-14586
[13]   Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin [J].
Bao, J ;
Sharp, AH ;
Wagster, MV ;
Becher, M ;
Schilling, G ;
Ross, CA ;
Dawson, VL ;
Dawson, TM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (10) :5037-5042
[14]   Depletion of brain glutathione results in a decrease of glutathione reductase activity; An enzyme susceptible to oxidative damage [J].
Barker, JE ;
Heales, SJR ;
Cassidy, A ;
Bolanos, JP ;
Land, JM ;
Clark, JB .
BRAIN RESEARCH, 1996, 716 (1-2) :118-122
[15]   IMMUNOCYTOCHEMICAL EVIDENCE FOR A MITOCHONDRIALLY LOCATED NITRIC-OXIDE SYNTHASE IN BRAIN AND LIVER [J].
BATES, TE ;
LOESCH, A ;
BURNSTOCK, G ;
CLARK, JB .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1995, 213 (03) :896-900
[16]   APPARENT HYDROXYL RADICAL PRODUCTION BY PEROXYNITRITE - IMPLICATIONS FOR ENDOTHELIAL INJURY FROM NITRIC-OXIDE AND SUPEROXIDE [J].
BECKMAN, JS ;
BECKMAN, TW ;
CHEN, J ;
MARSHALL, PA ;
FREEMAN, BA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (04) :1620-1624
[17]   ALS, SOD AND PEROXYNITRITE [J].
BECKMAN, JS ;
CARSON, M ;
SMITH, CD ;
KOPPENOL, WH .
NATURE, 1993, 364 (6438) :584-584
[18]  
Beckman JS, 1996, AM J PHYSIOL-CELL PH, V271, pC1424
[19]   Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome [J].
Beere, HM ;
Wolf, BB ;
Cain, K ;
Mosser, DD ;
Mahboubi, A ;
Kuwana, T ;
Tailor, P ;
Morimoto, RI ;
Cohen, GM ;
Green, DR .
NATURE CELL BIOLOGY, 2000, 2 (08) :469-475
[20]   Peroxynitrite-mediated nitration of tyrosine residues in Escherichia coli glutamine synthetase mimics adenylylation: Relevance to signal transduction. [J].
Berlett, BS ;
Friguet, B ;
Yim, MB ;
Chock, PB ;
Stadtman, ER .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (05) :1776-1780