The structure of the mineral leogangite Cu10(OH)6(SO4)(AsO4)4•8H2O-Implications for arsenic accumulation and removal

被引:11
作者
Frost, Ray L. [1 ]
Xi, Yunfei [1 ]
Palmer, Sara J. [1 ]
机构
[1] Queensland Univ Technol, Fac Sci & Technol, Chem Discipline, Brisbane, Qld 4001, Australia
基金
澳大利亚研究理事会;
关键词
Water purification; Soil remediation; Leogangite; Arsenate; Arsenic removal; Sulphate; Mechanism of formation; GOLD MINE; SULFATE; RAMAN; SPECTROSCOPY; REMEDIATION; BEUDANTITE; TAILINGS; DISTRICT; ALUNITE; LEAD;
D O I
10.1016/j.saa.2011.07.039
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
The objective of this research is to determine the molecular structure of the mineral leogangite. The formation of the types of arsenosulphate minerals offers a mechanism for arsenate removal from soils and mine dumps. Raman and infrared spectroscopy have been used to characterise the mineral. Observed bands are assigned to the stretching and bending vibrations of (SO4)(2-) and (AsO4)(3-) units, stretching and bending vibrations of hydrogen bonded (OH)(-) ions and Cu2+-(O,OH) units. The approximate range of O-H center dot center dot center dot O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of leogangite from different origins differ in that some spectra are more complex, where bands are sharp and the degenerate bands of (SO4)(2-) and (AsO4)(3-) are split and more intense. Lower wavenumbers of delta H2O bending vibration in the spectrum may indicate the presence of weaker hydrogen bonds compared with those in different leogangite samples. The formation of leogangite offers a mechanism for the removal of arsenic from the environment. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 227
页数:7
相关论文
共 39 条
[1]   Immobilization of uranium and arsenic by injectible iron and hydrogen stimulated autotrophic sulphate reduction [J].
Burghardt, D. ;
Simon, E. ;
Knoeller, K. ;
Kassahun, A. .
JOURNAL OF CONTAMINANT HYDROLOGY, 2007, 94 (3-4) :305-314
[2]   Arsenic and lead (beudantite) contamination of agricultural rice soils in the Guandu Plain of northern Taiwan [J].
Chiang, Kai Ying ;
Lin, Kuo Chuan ;
Lin, Sheng Chi ;
Chang, Tsun-Kuo ;
Wang, Ming Kuang .
JOURNAL OF HAZARDOUS MATERIALS, 2010, 181 (1-3) :1066-1071
[3]   Trapping and mobilisation of arsenic and lead in former mine tailings - Environmental conditions effects [J].
Courtin-Nomade, A ;
Neel, C ;
Bril, H ;
Davranche, M .
BULLETIN DE LA SOCIETE GEOLOGIQUE DE FRANCE, 2002, 173 (05) :479-485
[4]  
EGAL M, 2010, INT C ARS ENV 3 TAIN, P403
[5]   VERY STRONG HYDROGEN-BONDING [J].
EMSLEY, J .
CHEMICAL SOCIETY REVIEWS, 1980, 9 (01) :91-124
[6]  
Farmer V.C., 1974, Mineralogical Society Monograph 4: The Infrared Spectra of Minerals, 1974
[7]   A vibrational spectroscopic study of the mineral corkite PbFe33+(PO4,SO4)2(OH)6 [J].
Frost, Ray L. ;
Palmer, Sara J. .
JOURNAL OF MOLECULAR STRUCTURE, 2011, 988 (1-3) :47-51
[8]   Raman spectroscopic study of the hydroxy-arsenate-sulfate mineral chalcophyllite Cu18Al2(AsO4)4(SO4)3(OH)24•36H2O [J].
Frost, Ray L. ;
Palmer, Sara J. ;
Keeffe, Elle C. .
JOURNAL OF RAMAN SPECTROSCOPY, 2010, 41 (12) :1769-1774
[9]   The molecular structure of the mineral beudantite PbFe3(AsO4,SO4)2(OH)6 - Implications for arsenic accumulation and removal [J].
Frost, Ray L. ;
Palmer, Sara J. ;
Spratt, Henry J. ;
Martens, Wayde N. .
JOURNAL OF MOLECULAR STRUCTURE, 2011, 988 (1-3) :52-58
[10]   Raman spectroscopic study of the hydrogen-arsenate mineral pharmacolite Ca(AsO3OH)•2H2O - implications for aquifer and sediment remediation [J].
Frost, Ray L. ;
Bahfenne, Silmarilly ;
Cejka, Jiri ;
Sejkora, Jiri ;
Plasil, Jakub ;
Palmer, Sara J. .
JOURNAL OF RAMAN SPECTROSCOPY, 2010, 41 (10) :1348-1352