Type 1 diabetes can be cured by transplantation of isolated pancreatic islets. Because of the shortage of human donor tissue, adult porcine islets (APIs) constitute a possible alternative tissue source. Upon intraportal injection, islets are subjected to an instant blood-mediated inflammatory reaction (IBMIR) leading to blood clotting, leukocyte islet-infiltration, islet damage and insulin release. Xenogeneic islets surviving IBMIR are rejected in a cellular process involving CD4(+) T lymphocytes and macrophages. We have investigated whether APIs themselves produce and secrete chemokines and/or inflammatory cytokines that may contribute to IBMIR and/or cell-mediated rejection. APIs, cultured for 1, 4, 8 and 11 days post-isolation, expressed mRNA for monocyte chemoattractant protein-1 (MCP-1), IL-1beta and TNF-alpha. API culture supernatants induced migration of human monocytes, which was significantly blocked by an anti-human MCP-1 antibody (Ab). Immunohistochemistry revealed MCP-1 in the cytoplasm of alpha- and beta-cells in isolated islets and in islets in situ. However, APIs or their supernatants were not able to activate human aortic endothelial cells (HAECs) in vitro, and neither IL-1beta nor TNF-alpha were detected by enzyme-linked immunosorbent assay (ELISA) in API culture supernatants. Both recombinant porcine IL-1beta and TNF-alpha were able to activate human endothelial cells (ECs) inducing CD62E and CD106 expression as analyzed by flow cytometry. In conclusion, MCP-1 secreted by APIs may contribute to both IBMIR and rejection by attracting monocytes into the islet; monocytes which upon transformation into macrophages will potentiate antigen presentation and execute islet rejection.