SnO2 atomic layer deposition on ZrO2 and Al nanoparticles:: Pathway to enhanced thermite materials

被引:70
作者
Ferguson, JD
Buechler, KJ
Weimer, AW
George, SM
机构
[1] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
[2] ALD NanoSolut Inc, Westminster, CO 80020 USA
[3] Univ Colorado, Dept Biol & Chem Engn, Boulder, CO 80309 USA
关键词
thermite; nanoparticles; atomic layer deposition; Al; SnO2; fluidized bed;
D O I
10.1016/j.powtec.2005.04.009
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Thermite mixtures with improved contact between the fuel and oxidizer can provide increased reaction rates compared with traditional thermite mixtures. One technique to create thermite mixtures with improved contact is to deposit the oxidizer directly onto nanometer-sized fuel particles. This study investigates the atomic layer deposition (ALD) of SnO2 onto nanoparticles using SnCl4 and H2O2 reactants. The nanoparticle ALD was performed in a small, hot wall, vertical fluidized bed reactor. The SnO2 ALD was first demonstrated on ZrO2 nanoparticles. Auger electron spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES), transmission electron microscopy (TEM) and particle size distribution analysis were used to characterize the SnO2-coated ZrO2 nanoparticles. Subsequently, SnO2 ALD was performed on Al nanoparticles. The SnO2-coated Al nanoparticles were analyzed using ICP-AES and TEM. The SnO2-coated Al and the uncoated Al particles were also ignited and filmed with a digital video recorder. Although the SnO2-coated Al particles were far from stoichiometric thermite composites, the SnO2-coated Al particles reacted much more quickly and violently than the uncoated Al particles. The lower than expected Sri percent by mass observed on the SnO2-coated Al nanoparticles highlighted a major difficulty with coating nanoparticles. The nanoparticles have an extremely high surface area and the required reactant exposures are large even when assuming 100% reactant efficiency. These results illustrate the utility of ALD techniques to coat oxidizers on fuel nanoparticles to create enhanced thermite materials. (c) 2005 Elsevier B.V All rights reserved.
引用
收藏
页码:154 / 163
页数:10
相关论文
共 29 条
[1]   OXIDATION BEHAVIOR OF ALUMINUM NANOPOWDERS [J].
AUMANN, CE ;
SKOFRONICK, GL ;
MARTIN, JA .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1995, 13 (03) :1178-1183
[2]  
Brown ME, 1998, PROPELL EXPLOS PYROT, V23, P320, DOI 10.1002/(SICI)1521-4087(199812)23:6<320::AID-PREP320>3.3.CO
[3]  
2-3
[4]   Viscous flow reactor with quartz crystal microbalance for thin film growth by atomic layer deposition [J].
Elam, JW ;
Groner, MD ;
George, SM .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (08) :2981-2987
[5]   Surface chemistry and film growth during TiN atomic layer deposition using TDMAT and NH3 [J].
Elam, JW ;
Schuisky, M ;
Ferguson, JD ;
George, SM .
THIN SOLID FILMS, 2003, 436 (02) :145-156
[6]   Improved nucleation of TiN atomic layer deposition films on SILK low-k polymer dielectric using an Al2O3 atomic layer deposition adhesion layer [J].
Elam, JW ;
Wilson, CA ;
Schuisky, M ;
Sechrist, ZA ;
George, SM .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (03) :1099-1107
[7]   Atomic layer deposition of ultrathin and conformal Al2O3 films on BN particles [J].
Ferguson, JD ;
Weimer, AW ;
George, SM .
THIN SOLID FILMS, 2000, 371 (1-2) :95-104
[8]   ALD of SiO2 at room temperature using TEOS and H2O with NH3 as the catalyst [J].
Ferguson, JD ;
Smith, ER ;
Weimer, AW ;
George, SM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (08) :G528-G535
[9]   TiO2 atomic layer deposition on ZrO2 particles using alternating exposures of TiCl4 and H2O [J].
Ferguson, JD ;
Yoder, AR ;
Weimer, AW ;
George, SM .
APPLIED SURFACE SCIENCE, 2004, 226 (04) :393-404
[10]   Atomic layer deposition of boron nitride using sequential exposures of BCl3 and NH3 [J].
Ferguson, JD ;
Weimer, AW ;
George, SM .
THIN SOLID FILMS, 2002, 413 (1-2) :16-25