Direct proofs of generic finiteness of Nash equilibrium outcomes

被引:16
作者
Govindan, S [1 ]
Wilson, R
机构
[1] Univ Western Ontario, Dept Econ, London, ON N6A 5C2, Canada
[2] Stanford Univ, Sch Business, Stanford, CA 94305 USA
关键词
D O I
10.1111/1468-0262.00213
中图分类号
F [经济];
学科分类号
02 ;
摘要
引用
收藏
页码:765 / 769
页数:5
相关论文
共 9 条
[1]   THE ALGEBRAIC-GEOMETRY OF PERFECT AND SEQUENTIAL EQUILIBRIUM [J].
BLUME, LE ;
ZAME, WR .
ECONOMETRICA, 1994, 62 (04) :783-794
[2]  
BOHNAK J, 1987, GEOMETRIE ALGEBRIQUE
[3]  
ELMES S, 1990, 490 COL U
[4]  
Harsanyi J. C., 1973, International Journal of Game Theory, V2, P235, DOI 10.1007/BF01737572
[5]   ON THE STRATEGIC STABILITY OF EQUILIBRIA [J].
KOHLBERG, E ;
MERTENS, JF .
ECONOMETRICA, 1986, 54 (05) :1003-1037
[6]   SEQUENTIAL EQUILIBRIA [J].
KREPS, DM ;
WILSON, R .
ECONOMETRICA, 1982, 50 (04) :863-894
[7]   GENERALIZATION OF LEMKE-HOWSON ALGORITHM TO NONCOOPERATIVE N-PERSON GAMES [J].
ROSENMULLER, J .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (01) :73-+
[8]  
VANDENWAERDEN B, 1939, EINFUHRUNG ALGEBRAIS
[9]   COMPUTING EQUILIBRIA OF N-PERSON GAMES [J].
WILSON, R .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (01) :80-&