Colonization of the Arabidopsis rhizosphere by fluorescent Pseudomonas spp. activates a root-specific, ethylene-responsive PR-5 gene in the vascular bundle

被引:42
作者
Léon-Kloosterziel, KM
Verhagen, BWM
Keurentjes, JJB
VanPelt, JA
Rep, M
VanLoon, LC
Pieterse, CMJ
机构
[1] Univ Utrecht, Fac Biol, Grad Sch Expt Plant Sci, Sect Phytopathol, NL-3508 TB Utrecht, Netherlands
[2] Univ Amsterdam, Fac Sci, Swammerdam Inst Life Sci, NL-1090 GB Amsterdam, Netherlands
关键词
defense-related gene expression; enhancer trap; ethylene; ISR; Pseudomonas fluorescens; thaumatin-like protein;
D O I
10.1007/s11103-005-3097-y
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance (SAR), ISR is not associated with systemic changes in the expression of genes encoding pathogenesis-related (PR) proteins. To identify genes that are specifically expressed in response to colonization of the roots by ISR-inducing Pseudomonas fluorescens WCS417r bacteria, we screened a collection of Arabidopsis enhancer trap and gene trap lines containing a transposable element of the Ac/Ds system and the GUS reporter gene. We identified an enhancer trap line (WET121) that specifically showed GUS activity in the root vascular bundle upon colonization of the roots by WCS417r. Fluorescent Pseudomonas spp. strains P. fluorescens WCS374r and P. putida WCS358r triggered a similar expression pattern, whereas ISR-non-inducing Escherichia coli bacteria did not. Exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) mimicked the rhizobacteria-induced GUS expression pattern in the root vascular bundle, whereas methyl jasmonic acid and salicylic acid did not, indicating that the Ds element in WET121 is inserted in the vicinity of an ethylene-responsive gene. Analysis of the expression of the genes in the close vicinity of the Ds element revealed AtTLP1 as the gene responsible for the in cis activation of the GUS reporter gene in the root vascular bundle. AtTLP1 encodes a thaumatin-like protein that belongs to the PR-5 family of PR proteins, some of which possess antimicrobial properties. AtTLP1 knockout mutant plants showed normal levels of WCS417r-mediated ISR against the bacterial leaf pathogen Pseudomonas syringae pv. tomato DC3000, suggesting that expression of AtTLP1 in the roots is not required for systemic expression of ISR in the leaves. Together, these results indicate that induction of AtTLP1 is a local response of Arabidopsis roots to colonization by non-pathogenic fluorescent Pseudomonas spp. and is unlikely to play a role in systemic resistance.
引用
收藏
页码:731 / 748
页数:18
相关论文
共 75 条
[51]   NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol [J].
Spoel, SH ;
Koornneef, A ;
Claessens, SMC ;
Korzelius, JP ;
Van Pelt, JA ;
Mueller, MJ ;
Buchala, AJ ;
Métraux, JP ;
Brown, R ;
Kazan, K ;
Van Loon, LC ;
Dong, XN ;
Pieterse, CMJ .
PLANT CELL, 2003, 15 (03) :760-770
[52]   Systemic acquired resistance [J].
Sticher, L ;
MauchMani, B ;
Metraux, JP .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1997, 35 :235-270
[53]   PATTERNS OF GENE-ACTION IN PLANT DEVELOPMENT REVEALED BY ENHANCER TRAP AND GENE TRAP TRANSPOSABLE ELEMENTS [J].
SUNDARESAN, V ;
SPRINGER, P ;
VOLPE, T ;
HAWARD, S ;
JONES, JDG ;
DEAN, C ;
MA, H ;
MARTIENSSEN, R .
GENES & DEVELOPMENT, 1995, 9 (14) :1797-1810
[54]   Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes [J].
Tattersall, DB ;
vanHeeswijck, R ;
Hoj, PB .
PLANT PHYSIOLOGY, 1997, 114 (03) :759-769
[55]   Characterization of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance [J].
Ton, J ;
De Vos, M ;
Robben, C ;
Buchala, A ;
Métraux, JP ;
Van Loon, LC ;
Pieterse, CMJ .
PLANT JOURNAL, 2002, 29 (01) :11-21
[56]   Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis [J].
Ton, J ;
Van Pelt, JA ;
Van Loon, LC ;
Pieterse, CMJ .
MOLECULAR PLANT-MICROBE INTERACTIONS, 2002, 15 (01) :27-34
[57]   Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato [J].
Ton, J ;
Pieterse, CMJ ;
Van Loon, LC .
MOLECULAR PLANT-MICROBE INTERACTIONS, 1999, 12 (10) :911-918
[58]   ACQUIRED-RESISTANCE IN ARABIDOPSIS [J].
UKNES, S ;
MAUCHMANI, B ;
MOYER, M ;
POTTER, S ;
WILLIAMS, S ;
DINCHER, S ;
CHANDLER, D ;
SLUSARENKO, A ;
WARD, E ;
RYALS, J .
PLANT CELL, 1992, 4 (06) :645-656
[59]   Systemic resistance induced by rhizosphere bacteria [J].
van Loon, LC ;
Bakker, PAHM ;
Pieterse, CMJ .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 1998, 36 :453-483
[60]   The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins [J].
Van Loon, LC ;
Van Strien, EA .
PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY, 1999, 55 (02) :85-97