Construction of Parseval wavelets from redundant filter systems

被引:25
作者
Baggett, LW
Jorgensen, PET
Merrill, KD
Packer, JA
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.1982768
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider wavelets in L-2(R-d) which have generalized multiresolutions. This means that the initial resolution subspace V-0 in L-2(R-d) is not singly generated. As a result, the representation of the integer lattice Z(d) restricted to V-0 has a nontrivial multiplicity function. We show how the corresponding analysis and synthesis for these wavelets can be understood in terms of unitary-matrix-valued functions on a torus acting on a certain vector bundle. Specifically, we show how the wavelet functions on R-d can be constructed directly from the generalized wavelet filters. (c) 2005 American Institute of Physics.
引用
收藏
页数:28
相关论文
共 42 条
[1]   Wavelets on irregular grids with arbitrary dilation matrices and frame atoms for L2 (Rd) [J].
Aldroubi, A ;
Cabrelli, C ;
Molter, UM .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 17 (02) :119-140
[2]  
[Anonymous], 1992, CAMBRIDGE STUDIES AD
[3]  
[Anonymous], 1993, Ten Lectures of Wavelets
[4]   GENERAL EXISTENCE THEOREMS FOR ORTHONORMAL WAVELETS, AN ABSTRACT APPROACH [J].
BAGGETT, L ;
CAREY, A ;
MORAN, W ;
OHRING, P .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (01) :95-111
[5]  
BAGGETT L, 1999, CONT MATH, V247, P17
[6]   Generalized multi-resolution analyses and a construction procedure for all wavelet sets in Rn [J].
Baggett, LW ;
Medina, HA ;
Merrill, KD .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1999, 5 (06) :563-573
[7]   The construction of wavelets from generalized conjugate mirror filters in L2(Rn) [J].
Baggett, LW ;
Courter, JE ;
Merrill, KD .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2002, 13 (03) :201-223
[8]  
BAGGETT LW, 2005, MATHCA0504394
[9]   The theory of multiresolution analysis frames and applications to filter banks [J].
Benedetto, JJ ;
Li, SD .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 1998, 5 (04) :389-427
[10]   A characterization of dimension functions of wavelets [J].
Bownik, M ;
Rzeszotnik, Z ;
Speegle, D .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2001, 10 (01) :71-92