Generalized multi-resolution analyses and a construction procedure for all wavelet sets in Rn

被引:94
作者
Baggett, LW
Medina, HA
Merrill, KD
机构
[1] Univ Colorado, Dept Math, Boulder, CO 80309 USA
[2] Loyola Marymount Univ, Dept Math, Los Angeles, CA 90045 USA
[3] Colorado Coll, Dept Math, Colorado Springs, CO 80903 USA
关键词
wavelet; wavelet set; multi-resolution analysis; unitary representation;
D O I
10.1007/BF01257191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An abstract formulation of generalized multiresolution analyses is presented, and those GMRAs that come from multiwavelets ore characterized As an application of this abstract formulation, a constructive procedure is developed which Produces all wavelet sets in R-n relative to an integral expansive matrix.
引用
收藏
页码:563 / 573
页数:11
相关论文
共 9 条
[1]   GENERAL EXISTENCE THEOREMS FOR ORTHONORMAL WAVELETS, AN ABSTRACT APPROACH [J].
BAGGETT, L ;
CAREY, A ;
MORAN, W ;
OHRING, P .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1995, 31 (01) :95-111
[2]  
Dai X., 1998, Contemp. Math., V216, P15
[3]  
Dai X., 1998, MEM AMS, V134
[4]   Wavelet sets in R-n [J].
Dai, XD ;
Larson, DR ;
Speegle, DM .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (04) :451-456
[5]  
Halmos Paul R, 1951, Introduction to Hilbert Space and the Theory of Spectral Multiplicity
[6]  
HELSON H, 1986, SPECTRAL THEOREM
[7]  
Mackey G.W., 1976, The Theory of Unitary Group Representations
[8]  
SOARDI P, IN PRESS J FOURIER A
[9]  
STONE MH, 1932, AM MATH SOC