Routes towards separating metallic and semiconducting nanotubes

被引:49
作者
Banerjee, S
Hemraj-Benny, T
Wong, SS [1 ]
机构
[1] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[2] Brookhaven Natl Lab, Mat & Chem Sci Dept, Upton, NY 11973 USA
关键词
nanotube; chirality; armchair; zigzag; semiconducting vs metallic tube separation; electronic selectivity; chemical functionalization; end functionalization; sidewall functionalization; Raman spectroscopy; UV-visible-near IR spectroscopy; nanocomposite formation;
D O I
10.1166/jnn.2005.173
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Separation of single-walled carbon nanotubes (SWNTs), according to their electronic characteristics, is essential to the development of molecular electronics, including field-effect transistors. Recent efforts by many groups have used non-covalent and covalent sidewall chemistry to probe differential reactivity in metallic and semiconducting nanotubes. These chemically based methods may more easily effect the bulk separation of tubes, as compared with physical techniques associated with (i) alternating current dielectrophoresis as well as (ii) the current-induced oxidation of metallic nanotubes, that have recently been reported as alternative methods of achieving chiral separations of nanotubes. Exploration of these types of reactions is critical for the development of interesting chemical and physical properties at the interface between molecules and materials as well as for establishing protocols for the selective functionalization of nanotubes.
引用
收藏
页码:841 / 855
页数:15
相关论文
共 92 条
[1]   A simple chemical route to selectively eliminate metallic carbon nanotubes in nanotube network devices [J].
An, L ;
Fu, QA ;
Lu, CG ;
Liu, J .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (34) :10520-10521
[2]   Molecular electronics with carbon nanotubes [J].
Avouris, P .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1026-1034
[3]   Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst [J].
Bachilo, SM ;
Balzano, L ;
Herrera, JE ;
Pompeo, F ;
Resasco, DE ;
Weisman, RB .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (37) :11186-11187
[4]   Logic circuits with carbon nanotube transistors [J].
Bachtold, A ;
Hadley, P ;
Nakanishi, T ;
Dekker, C .
SCIENCE, 2001, 294 (5545) :1317-1320
[5]   Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode [J].
Bahr, JL ;
Yang, JP ;
Kosynkin, DV ;
Bronikowski, MJ ;
Smalley, RE ;
Tour, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (27) :6536-6542
[6]   Covalent chemistry of single-wall carbon nanotubes [J].
Bahr, JL ;
Tour, JM .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (07) :1952-1958
[7]   Highly functionalized carbon nanotubes using in situ generated diazonium compounds [J].
Bahr, JL ;
Tour, JM .
CHEMISTRY OF MATERIALS, 2001, 13 (11) :3823-+
[8]   Using the selective functionalization of metallic single-walled carbon nanotubes to control dielectrophoretic mobility [J].
Baik, S ;
Usrey, M ;
Rotkina, L ;
Strano, MS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (40) :15560-15564
[9]   Selective metallic tube reactivity in the solution-phase osmylation of single-walled carbon nanotubes [J].
Banerjee, S ;
Wong, SS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (07) :2073-2081
[10]   Rational chemical strategies for carbon nanotube functionalization [J].
Banerjee, S ;
Kahn, MGC ;
Wong, SS .
CHEMISTRY-A EUROPEAN JOURNAL, 2003, 9 (09) :1899-1908