Assessing goodness of fit of spatially inhomogeneous Poisson processes

被引:9
作者
Brix, A
Senoussi, R
Couteron, P
Chadoeuf, J
机构
[1] Univ Copenhagen, Dept Biostat, DK-2200 Copenhagen N, Denmark
[2] INRA, Unite Biometrie, F-84914 Avignon 9, France
[3] Ecole Natl Genie Rural Eaux & Forets, F-34033 Montpellier 01, France
[4] INRA, Unite Biometrie, F-84914 Avignon 9, France
关键词
complete spatial randomness; inhomogeneous Poisson point process;
D O I
10.1093/biomet/88.2.487
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose an extension of the classical complete spatial randomness tests to nonstationary Poisson spatial processes. The method consists of first performing the classical tests locally and then grouping the local results into a global test. The global test is a test for nonstationary Poisson process assumption, whereas the local tests can be used in an exploratory way to decide whether the observed process is locally regular or clustered or if we do not reject the inhomogeneous Poisson assumption. Under a Cox assumption, an optimal partition of the sampling window can be derived. Finally, we present some examples from forestry and weed sciences.
引用
收藏
页码:487 / 497
页数:11
相关论文
共 11 条
[1]  
COUTERON P, 1997, PLANT ECOL, V53, P867
[2]  
Cressie N, 1993, STAT SPATIAL DATA
[3]  
Dacunha-Castelle D., 1983, PROBABILITES STAT, V2
[4]  
Diggle P.J., 1983, Statistical analysis of spatial point patterns
[5]   The influence of vegetation pattern on the productivity, diversity and stability of vegetation:: The case of 'brousse tigree' in the Sahel [J].
Hiernaux, P ;
Gérard, B .
ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY, 1999, 20 (03) :147-158
[6]   On the origin of tiger bush [J].
Lefever, R ;
Lejeune, O .
BULLETIN OF MATHEMATICAL BIOLOGY, 1997, 59 (02) :263-294
[7]  
Ripley B. D., 1981, SPATIAL STAT
[8]  
Ripley B.D., 1988, Statistical inference for spatial processes
[9]   A TEST OF SPATIAL RANDOMNESS ON SMALL SCALES, COMBINING INFORMATION FROM MAPPED LOCATIONS WITHIN SEVERAL QUADRATS [J].
SHAW, MW .
BIOMETRICS, 1990, 46 (02) :447-458
[10]  
Stoyan D., 1995, STOCHASTIC GEOMETRY