Protein arginine methyltransferase 1: Positively charged residues in substrate peptides distal to the site of methylation are important for substrate binding and catalysis

被引:111
作者
Osborne, Tanesha C.
Obianyo, Obiamaka
Zhang, Xing
Cheng, Xiaodong
Thompson, Paul R.
机构
[1] Univ S Carolina, Dept Chem & Biochem, Columbia, SC 29208 USA
[2] Emory Univ, Sch Med, Dept Biochem, Atlanta, GA 30322 USA
关键词
D O I
10.1021/bi701558t
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein arginine methyltransferases (PRMTs) are a group of eukaryotic enzymes that catalyze the methylation of Arg residues in a variety of proteins (e.g., histones H3 and H4), and their activities influence a wide range of cellular processes, including cell growth, RNA splicing, differentiation, and transcriptional regulation. Dysregulation of these enzymes has been linked to heart disease and cancer, suggesting this enzyme family as a novel therapeutic target. To aid the development of PRMT inhibitors, we characterized the substrate specificity of both the rat and human PRMTl orthologues using histone based peptide substrates. N- and C-terminal truncations to identify a minimal peptide substrate indicate that long-range interactions between enzyme and substrate are important for high rates of substrate capture. The importance of these long-range interactions to substrate capture were confirmed by "mutagenesis" experiments on a minimal peptide substrate. Inhibition studies on S-adenosyl-homocysteine, thioadenosine, methylthioadenosine, homocysteine, and sinefungin suggest that potent and selective bisubstrate analogue inhibitor(s) for PRMTl can be developed by linking a histone based peptide substrate to homocysteine or sinefungin. Additionally, we present evidence that PRMTI utilizes a partially processive mechanism to dimethylate its substrates.
引用
收藏
页码:13370 / 13381
页数:12
相关论文
共 71 条
[1]   A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor [J].
Abramovich, C ;
Yakobson, B ;
Chebath, J ;
Revel, M .
EMBO JOURNAL, 1997, 16 (02) :260-266
[2]   Protein methylation: a signal event in post-translational modification [J].
Aleta, JM ;
Cimato, TR ;
Ettinger, MJ .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (03) :89-91
[3]   Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53 [J].
An, W ;
Kim, J ;
Roeder, RG .
CELL, 2004, 117 (06) :735-748
[4]   AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer [J].
Anzick, SL ;
Kononen, J ;
Walker, RL ;
Azorsa, DO ;
Tanner, MM ;
Guan, XY ;
Sauter, G ;
Kallioniemi, OP ;
Trent, JM ;
Meltzer, PS .
SCIENCE, 1997, 277 (5328) :965-968
[5]   Two functional modes of a nuclear receptor-recruited arginine methyltransferase in transcriptional activation [J].
Barrero, Maria J. ;
Malik, Sohail .
MOLECULAR CELL, 2006, 24 (02) :233-243
[6]   Methylation at arginine 17 of histone H3 is linked to gene activation [J].
Bauer, UM ;
Daujat, S ;
Nielsen, SJ ;
Nightingale, K ;
Kouzarides, T .
EMBO REPORTS, 2002, 3 (01) :39-44
[7]   Arginine methylation: An emerging regulator of protein function [J].
Bedford, MT ;
Richard, S .
MOLECULAR CELL, 2005, 18 (03) :263-272
[8]   LDL cholesterol upregulates synthesis of asymmetrical dimethylarginine in human endothelial cells -: Involvement of S-adenosylmethionine-dependent methyltransferases [J].
Böger, RH ;
Sydow, K ;
Borlak, J ;
Thum, T ;
Lenzen, H ;
Schubert, B ;
Tsikas, D ;
Bode-Böger, SM .
CIRCULATION RESEARCH, 2000, 87 (02) :99-105
[9]   Regulation of transcription by a protein methyltransferase [J].
Chen, DG ;
Ma, H ;
Hong, H ;
Koh, SS ;
Huang, SM ;
Schurter, BT ;
Aswad, DW ;
Stallcup, MR .
SCIENCE, 1999, 284 (5423) :2174-2177
[10]   The coactivator-associated arginine methyltransferase is necessary for muscle differentiation - CARM1 coactivates myocyte enhancer factor-2 [J].
Chen, SL ;
Loffler, KA ;
Chen, DG ;
Stallcup, MR ;
Muscat, GEO .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (06) :4324-4333