Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity

被引:113
作者
Munro, CA
Winter, K
Buchan, A
Henry, K
Becker, JM
Brown, AJP
Bulawa, CE
Gow, NAR [1 ]
机构
[1] Univ Aberdeen, Dept Mol & Cell Biol, Aberdeen AB25 2ZD, Scotland
[2] Millennium Pharmaceut Inc, Cambridge, MA 02319 USA
[3] Univ Tennessee, Dept Microbiol & Biochem, Knoxville, TN 37996 USA
[4] Univ Tennessee, Dept Cellular & Mol Biol, Knoxville, TN 37996 USA
关键词
D O I
10.1046/j.1365-2958.2001.02347.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CaCHS1 of the fungal pathogen Candida albicans encodes an essential chitin synthase that is required for septum formation, viability, cell shape and integrity. The CaCHS1 gene was inactivated by first disrupting one allele using the ura-blaster protocol, then placing the remaining allele under the control of the maltose-inducible, glucose-repressible MRP1 promoter. Under repressing conditions, yeast cell growth continued temporarily, but daughter buds failed to detach from parents, resulting in septumless chains of cells with constrictions defining contiguous compartments. After several generations, a proportion of the distal compartments lysed. The conditional Delta chs1 mutant also failed to form primary septa in hyphae; after several generations, growth stopped, and hyphae developed swollen balloon-like features or lysed at one of a number of sites including the hyphal apex and other locations that would not normally be associated with septum formation. CHS1 therefore synthesizes the septum of both yeast and hyphae and also maintains the integrity of the lateral cell wall. The conditional mutant was avirulent under repressing conditions in an experimental model of systemic infection. Because this gene is essential in vitro and in vivo and is not present in humans, it represents an attractive target for the development of antifungal compounds.
引用
收藏
页码:1414 / 1426
页数:13
相关论文
共 56 条
[1]  
[Anonymous], ENTREP REGION DEV
[2]   ISOLATION OF A CHITIN SYNTHASE GENE (CHS1) FROM CANDIDA-ALBICANS BY EXPRESSION IN SACCHAROMYCES-CEREVISIAE [J].
AUYOUNG, J ;
ROBBINS, PW .
MOLECULAR MICROBIOLOGY, 1990, 4 (02) :197-207
[3]   CLASSIFICATION OF FUNGAL CHITIN SYNTHASES [J].
BOWEN, AR ;
CHENWU, JL ;
MOMANY, M ;
YOUNG, R ;
SZANISZLO, PJ ;
ROBBINS, PW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (02) :519-523
[4]   CHITIN SYNTHESIS IN CANDIDA-ALBICANS - COMPARISON OF YEAST AND HYPHAL FORMS [J].
BRAUN, PC ;
CALDERONE, RA .
JOURNAL OF BACTERIOLOGY, 1978, 133 (03) :1472-1477
[5]   Regulatory networks controlling Candida albicans morphogenesis [J].
Brown, AJP ;
Gow, NAR .
TRENDS IN MICROBIOLOGY, 1999, 7 (08) :333-338
[6]   ATTENUATED VIRULENCE OF CHITIN-DEFICIENT MUTANTS OF CANDIDA-ALBICANS [J].
BULAWA, CE ;
MILLER, DW ;
HENRY, LK ;
BECKER, JM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (23) :10570-10574
[7]   CHITIN SYNTHASE-I AND CHITIN SYNTHASE-II ARE NOT REQUIRED FOR CHITIN SYNTHESIS INVIVO IN SACCHAROMYCES-CEREVISIAE [J].
BULAWA, CE ;
OSMOND, BC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (19) :7424-7428
[8]   THE SACCHAROMYCES-CEREVISIAE STRUCTURAL GENE FOR CHITIN SYNTHASE IS NOT REQUIRED FOR CHITIN SYNTHESIS INVIVO [J].
BULAWA, CE ;
SLATER, M ;
CABIB, E ;
AUYOUNG, J ;
SBURLATI, A ;
ADAIR, WL ;
ROBBINS, PW .
CELL, 1986, 46 (02) :213-225
[10]   GENETICS AND MOLECULAR-BIOLOGY OF CHITIN SYNTHESIS IN FUNGI [J].
BULAWA, CE .
ANNUAL REVIEW OF MICROBIOLOGY, 1993, 47 :505-534