A model-free test for reduced rank in multivariate regression

被引:49
作者
Cook, RD [1 ]
Setodji, CM
机构
[1] Univ Minnesota, Sch Stat, St Paul, MN 55108 USA
[2] RAND Corp, Santa Monica, CA 90407 USA
关键词
central subspaces; dimension reduction; multivariate regression; regression; regression graphics;
D O I
10.1198/016214503000134
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a test of dimension in multivariate regression. This test is in the spirit of tests on the rank of the coefficient matrix in a multivariate linear model, but it does not require a prespecified model. The test may be particularly useful at the outset of an analysis before a multivariate model is posited, because it can lead to low-dimensional summary plots that are inferred to contain all of the sample information on the multivariate mean function.
引用
收藏
页码:340 / 351
页数:12
相关论文
共 27 条
[1]   ESTIMATING LINEAR RESTRICTIONS ON REGRESSION COEFFICIENTS FOR MULTIVARIATE NORMAL DISTRIBUTIONS [J].
ANDERSON, TW .
ANNALS OF MATHEMATICAL STATISTICS, 1951, 22 (03) :327-351
[2]   Asymptotic theory for canonical correlation analysis [J].
Anderson, TW .
JOURNAL OF MULTIVARIATE ANALYSIS, 1999, 70 (01) :1-29
[3]  
Anderson TW, 1999, ANN STAT, V27, P1141
[4]  
Bartlett M, 1947, J R STAT SOC B, V9, P176
[5]   Corrections to test statistics in principal Hessian directions [J].
Bentler, PM ;
Xie, J .
STATISTICS & PROBABILITY LETTERS, 2000, 47 (04) :381-389
[6]  
BURA E, 2002, UNPUB RANK ESTIMATIO
[7]  
Cook D., 1993, J COMPUTATIONAL GRAP, V2, P225, DOI [DOI 10.1080/10618600.1993.10474610, DOI 10.2307/1390644]
[8]  
Cook R. D., 1998, WILEY PROB STAT
[9]   REWEIGHTING TO ACHIEVE ELLIPTICALLY CONTOURED COVARIATES IN REGRESSION [J].
COOK, RD ;
NACHTSHEIM, CJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1994, 89 (426) :592-599
[10]   Dimension reduction for conditional mean in regression [J].
Cook, RD ;
Bing, L .
ANNALS OF STATISTICS, 2002, 30 (02) :455-474