A model-free test for reduced rank in multivariate regression

被引:49
作者
Cook, RD [1 ]
Setodji, CM
机构
[1] Univ Minnesota, Sch Stat, St Paul, MN 55108 USA
[2] RAND Corp, Santa Monica, CA 90407 USA
关键词
central subspaces; dimension reduction; multivariate regression; regression; regression graphics;
D O I
10.1198/016214503000134
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a test of dimension in multivariate regression. This test is in the spirit of tests on the rank of the coefficient matrix in a multivariate linear model, but it does not require a prespecified model. The test may be particularly useful at the outset of an analysis before a multivariate model is posited, because it can lead to low-dimensional summary plots that are inferred to contain all of the sample information on the multivariate mean function.
引用
收藏
页码:340 / 351
页数:12
相关论文
共 27 条
[21]  
LI B, 2003, IN PRESS ANN STAT
[22]   ON PRINCIPAL HESSIAN DIRECTIONS FOR DATA VISUALIZATION AND DIMENSION REDUCTION - ANOTHER APPLICATION OF STEINS LEMMA [J].
LI, KC .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (420) :1025-1039
[23]  
Reinsel G. C., 1998, MULTIVARIATE REDUCED, DOI DOI 10.1007/978-1-4757-2853-8
[24]   SYNTHESIS OF VARIANCE [J].
Satterthwaite, Franklin E. .
PSYCHOMETRIKA, 1941, 6 (05) :309-316
[25]  
SCHMIDLI H, 1996, REDUCED RANK REGRESS
[26]   CONSISTENT ESTIMATION OF SCALED COEFFICIENTS [J].
STOKER, TM .
ECONOMETRICA, 1986, 54 (06) :1461-1481
[27]   Assessing the number of linear components in a general regression problem [J].
Velilla, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) :1088-1098