Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana

被引:454
作者
Torres, MA
Jones, JDG
Dangl, JL
机构
[1] Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
[2] John Innes Ctr Plant Sci Res, Sainsbury Lab, Norwich NR4 7UH, Norfolk, England
[3] Univ N Carolina, Dept Microbiol & Immunol, Curriculum Genet, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Carolina Ctr Genome Sci, Chapel Hill, NC 27599 USA
关键词
D O I
10.1038/ng1639
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Plant immune responses are usually accompanied by the production of extracellular superoxide at and surrounding infection sites(1-3). Extracellular reactive oxygen intermediates (ROIs) in plants were proposed to drive programmed cell death correlated with disease resistance (the hypersensitive response). ROIs derived from this oxidative burst are generated by plasma membrane NADPH oxidases, anchored by gp91(phox) proteins related to those responsible for the respiratory oxidative burst activated in mammalian neutrophils during infection(4,5). Mutation of Arabidopsis thaliana respiratory burst oxidase (Atrboh) genes eliminated pathogen-induced ROI production but had only a modest effect on the hypersensitive response(4). We show that Atrboh function can be activated by exogenous ROIs. Unexpectedly, the subsequent oxidative burst can suppress cell death in cells surrounding sites of NADPH oxidase activation. This cell death requires salicylic acid, a plant immune system activator(6). Thus, ROIs generated by Atrboh proteins can antagonize salicylic acid-dependent pro-death signals. These results have implications for understanding how salicylic acid activates defense signaling in cells spatially removed from infection sites without causing cell death.
引用
收藏
页码:1130 / 1134
页数:5
相关论文
共 30 条
[1]   Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells [J].
Allan, AC ;
Fluhr, R .
PLANT CELL, 1997, 9 (09) :1559-1572
[2]   Reactive oxygen species: Metabolism, oxidative stress, and signal transduction [J].
Apel, K ;
Hirt, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2004, 55 :373-399
[3]   PLASMA-MEMBRANE REDOX ENZYME IS INVOLVED IN THE SYNTHESIS OF O2- AND H2O2 BY PHYTOPHTHORA ELICITOR-STIMULATED ROSE CELLS [J].
AUH, CK ;
MURPHY, TM .
PLANT PHYSIOLOGY, 1995, 107 (04) :1241-1247
[4]   Runaway cell death, but not basal disease resistance, in Isd1 is SA- and NIM1/NPR1-dependent [J].
Aviv, DH ;
Rustérucci, C ;
Holt, BF ;
Dietrich, RA ;
Parker, JE ;
Dangl, JL .
PLANT JOURNAL, 2002, 29 (03) :381-391
[5]   Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola [J].
Bestwick, CS ;
Brown, IR ;
Bennett, MHR ;
Mansfield, JW .
PLANT CELL, 1997, 9 (02) :209-221
[6]   The NADPH oxidase of professional phagocytes - prototype of the NOX electron transport chain systems [J].
Cross, AR ;
Segal, AW .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2004, 1657 (01) :1-22
[7]   Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis [J].
Davletova, S ;
Rizhsky, L ;
Liang, HJ ;
Zhong, SQ ;
Oliver, DJ ;
Coutu, J ;
Shulaev, V ;
Schlauch, K ;
Mittler, R .
PLANT CELL, 2005, 17 (01) :268-281
[8]   Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response [J].
Delledonne, M ;
Zeier, J ;
Marocco, A ;
Lamb, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :13454-13459
[9]   A novel zinc finger protein is encoded by the arabidopsis LSD1 gene and functions as a negative regulator of plant cell death [J].
Dietrich, RA ;
Richberg, MH ;
Schmidt, R ;
Dean, C ;
Dangl, JL .
CELL, 1997, 88 (05) :685-694