Monitoring of urban heat island effect in Beijing combining ASTER and TM data

被引:79
作者
Cai, Guoyin [4 ]
Du, Mingyi [4 ]
Xue, Yong [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing Applicat, State Key Lab Remote Sensing Sci, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Inst Remote Sensing Applicat, Beijing Normal Univ, Beijing 100101, Peoples R China
[3] London Metropolitan Univ, Dept Comp, London N7 8DB, England
[4] Beijing Univ Civil Engn & Architecture, Sch Geomat & Urban Informat, Beijing 100044, Peoples R China
关键词
LAND-COVER; RADIATION; IMPACT;
D O I
10.1080/01431160903469079
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This paper focuses on the monitoring of the urban heat island (UHI) effect with temporal and spatial variation, combining Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Thematic Mapper (TM) data. Our study area is located in the central urban area of Beijing, which mainly refers to the areas within the fifth ring road. For detecting UHI changes over the years 2002-2006, three ASTER images in the summers of 2003, 2004 and 2006 and two TM datasets in the summers of 2002 and 2005 were collected. For monitoring UHI changes with the seasons, three ASTER images and one TM image in 2004 in winter, spring, summer and autumn, respectively, were employed. To calculate the urban heat island intensity, the land surface temperatures were retrieved iteratively for ASTER data and using a generalized single-channel method for the TM image. Four separated regions located in four directions outside the fifth ring road were selected as representing rural comparative regions. Their averaged land surface temperature was regarded as the rural comparative temperature. The UHI intensity was computed by the difference between the pixel urban land surface temperature in the urban area and the comparative temperature in the rural area. Detection of the UHI effect over 2002 to 2006 indicated that most of the areas with high UHI effect were the industrial land use regions and the areas having a high density of buildings, roads, transportations and residents; and the areas without UHI effect were located around the regions with large areas of grassland, trees and water bodies. Our results also showed that the UHI effect was not proportional to urbanization over time. Statistical UHI data during 20 July to 20 September in 2003-2008 also support this point. The monitoring of the UHI effect over seasons (winter, spring, summer and autumn) showed that the urban area of Beijing city had a high UHI effect except in winter, when the urban area of Beijing was in an urban heat sink; the UHI effect increased in spring, summer and autumn.
引用
收藏
页码:1213 / 1232
页数:20
相关论文
共 31 条
[21]   Assessment of ASTER land cover and MODIS NDVI data at multiple scales for ecological characterization of an and urban center [J].
Stefanov, WL ;
Netzband, M .
REMOTE SENSING OF ENVIRONMENT, 2005, 99 (1-2) :31-43
[22]   Land use planning and surface heat island formation: A parcel-based radiation flux approach [J].
Stone, Brian ;
Norman, John M. .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (19) :3561-3573
[23]   Satellite-measured growth of the urban heat island of Houston, Texas [J].
Streutker, DR .
REMOTE SENSING OF ENVIRONMENT, 2003, 85 (03) :282-289
[24]   ASTER-based study of the night-time urban heat island effect in Metro Manila [J].
Tiangco, M. ;
Lagmay, A. M. F. ;
Argete, J. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (10) :2799-2818
[25]  
Voogt JA., 2002, CAUSES CONSEQUENCES, V3, P660
[26]   Thermal remote sensing of urban areas: An introduction to the special issue [J].
Weng, Qihao ;
Quattrochi, Dale A. .
REMOTE SENSING OF ENVIRONMENT, 2006, 104 (02) :119-122
[27]   An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data [J].
Xian, George ;
Crane, Mike .
REMOTE SENSING OF ENVIRONMENT, 2006, 104 (02) :147-156
[28]   Iterative self-consistent approach for earth surface temperature determination [J].
Xue, Y ;
Cai, Y ;
Guan, YN ;
Cracknell, AP ;
Tang, K .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (01) :185-192
[29]   Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery [J].
Yuan, Fei ;
Bauer, Marvin E. .
REMOTE SENSING OF ENVIRONMENT, 2007, 106 (03) :375-386
[30]  
ZHANG JH, 2005, CHINA SCI, V48, P187