Bayesian spiking neurons I: Inference

被引:200
作者
Deneve, Sophie [1 ]
机构
[1] Ecole Normale Super, Coll France, Dept Detudes Cognit, Grp Neural Theory, F-75005 Paris, France
关键词
D O I
10.1162/neco.2008.20.1.91
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that the dynamics of spiking neurons can be interpreted as a form of Bayesian inference in time. Neurons that optimally integrate evidence about events in the external world exhibit properties similar to leaky integrate-and-fire neurons with spike-dependent adaptation and maximally respond to fluctuations of their input. Spikes signal the occurrence of new information-what cannot be predicted from the past activity. As a result, firing statistics are close to Poisson, albeit providing a deterministic representation of probabilities.
引用
收藏
页码:91 / 117
页数:27
相关论文
共 41 条
[31]   THE STATISTICAL RELIABILITY OF SIGNALS IN SINGLE NEURONS IN CAT AND MONKEY VISUAL-CORTEX [J].
TOLHURST, DJ ;
MOVSHON, JA ;
DEAN, AF .
VISION RESEARCH, 1983, 23 (08) :775-785
[32]   Integration of proprioceptive and visual position-information: An experimentally supported model [J].
van Beers, RJ ;
Sittig, AC ;
van der Gon, JJD .
JOURNAL OF NEUROPHYSIOLOGY, 1999, 81 (03) :1355-1364
[33]   Natural stimulation of the nonclassical receptive field increases information transmission efficiency in V1 [J].
Vinje, WE ;
Gallant, JL .
JOURNAL OF NEUROSCIENCE, 2002, 22 (07) :2904-2915
[34]   THE RESPONSE VARIABILITY OF STRIATE CORTICAL-NEURONS IN THE BEHAVING MONKEY [J].
VOGELS, R ;
SPILEERS, W ;
ORBAN, GA .
EXPERIMENTAL BRAIN RESEARCH, 1989, 77 (02) :432-436
[35]  
Weiss Y, 2002, NEU INF PRO, P77
[36]   Correctness of belief propagation in Gaussian graphical models of arbitrary topology [J].
Weiss, Y ;
Freeman, WT .
NEURAL COMPUTATION, 2001, 13 (10) :2173-2200
[37]   Computational principles of movement neuroscience [J].
Wolpert, Daniel M. ;
Ghahramani, Zoubin .
NATURE NEUROSCIENCE, 2000, 3 (11) :1212-1217
[38]  
WU S, 2002, ADV NEURAL INFORM PR, V14
[39]  
ZEMEL R, 1997, ADV INFORM PROCESSIN, V9
[40]   Probabilistic interpretation of population codes [J].
Zemel, RS ;
Dayan, P ;
Pouget, A .
NEURAL COMPUTATION, 1998, 10 (02) :403-430