limma powers differential expression analyses for RNA-sequencing and microarray studies

被引:24305
作者
Ritchie, Matthew E. [1 ,2 ]
Phipson, Belinda [3 ]
Wu, Di [4 ]
Hu, Yifang [5 ]
Law, Charity W. [6 ]
Shi, Wei [7 ]
Smyth, Gordon K. [2 ,5 ]
机构
[1] Walter & Eliza Hall Inst Med Res, Div Mol Med, Parkville, Vic 3052, Australia
[2] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3010, Australia
[3] Royal Childrens Hosp, Murdoch Childrens Res, Parkville, Vic 3052, Australia
[4] Harvard Univ, Dept Stat, Cambridge, MA 02138 USA
[5] Walter & Eliza Hall Inst Med Res, Bioinformat Div, Parkville, Vic 3052, Australia
[6] Univ Zurich, Inst Mol Life Sci, CH-8057 Zurich, Switzerland
[7] Univ Melbourne, Dept Comp & Informat Syst, Parkville, Vic 3010, Australia
基金
英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
GRAPHICAL USER-INTERFACE; TRUE NULL HYPOTHESES; FALSE DISCOVERY RATE; SEQ DATA; 2-CHANNEL MICROARRAYS; BACKGROUND CORRECTION; GENE ONTOLOGY; NORMALIZATION; BIOCONDUCTOR; PROPORTION;
D O I
10.1093/nar/gkv007
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
引用
收藏
页数:13
相关论文
共 82 条
[1]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[2]  
[Anonymous], 2013, DYNAMIC DOCUMENTS R
[3]  
[Anonymous], THESIS U MELBOURNE
[4]  
[Anonymous], TECHNICAL REPORT
[5]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[6]   Control of mammary stem cell function by steroid hormone signalling [J].
Asselin-Labat, Marie-Liesse ;
Vaillant, Francois ;
Sheridan, Julie M. ;
Pal, Bhupinder ;
Wu, Di ;
Simpson, Evan R. ;
Yasuda, Hisataka ;
Smyth, Gordon K. ;
Martin, T. John ;
Lindeman, Geoffrey J. ;
Visvader, Jane E. .
NATURE, 2010, 465 (7299) :798-802
[7]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[8]   STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT [J].
BLAND, JM ;
ALTMAN, DG .
LANCET, 1986, 1 (8476) :307-310
[9]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[10]   Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics [J].
Brusniak, Mi-Youn ;
Bodenmiller, Bernd ;
Campbell, David ;
Cooke, Kelly ;
Eddes, James ;
Garbutt, Andrew ;
Lau, Hollis ;
Letarte, Simon ;
Mueller, Lukas N. ;
Sharma, Vagisha ;
Vitek, Olga ;
Zhang, Ning ;
Aebersold, Ruedi ;
Watts, Julian D. .
BMC BIOINFORMATICS, 2008, 9 (1)